中文字幕人妻色偷偷久久_天天鲁一鲁摸一摸爽一爽_最新亚洲人成网站在线观看_999久久久免费精品国产_久久精品丝袜高跟鞋

歡迎訪一網(wǎng)寶!您身邊的知識小幫手,專注做最新的學習參考資料!

北師大三年級下數(shù)學教案范例

一網(wǎng)寶 分享 時間: 加入收藏 我要投稿 點贊

函數(shù)的單調(diào)性也可以叫做函數(shù)的增減性。當函數(shù)f 的自變量在其定義區(qū)間內(nèi)增大時,函數(shù)值f也隨著增大,則稱該函數(shù)為在該區(qū)間上具有單調(diào)性。下面是小編為大家整理的三角函數(shù)單調(diào)性數(shù)學教案5篇,希望大家能有所收獲!

三角函數(shù)單調(diào)性數(shù)學教案1

教學準備

教學目標

1、知識與技能

(1)了解周期現(xiàn)象在現(xiàn)實中廣泛存在;(2)感受周期現(xiàn)象對實際工作的意義;(3)理解周期函數(shù)的概念;(4)能熟練地判斷簡單的實際問題的周期;(5)能利用周期函數(shù)定義進行簡單運用。

2、過程與方法

通過創(chuàng)設(shè)情境:單擺運動、時鐘的圓周運動、潮汐、波浪、四季變化等,讓學生感知周期現(xiàn)象;從數(shù)學的角度分析這種現(xiàn)象,就可以得到周期函數(shù)的定義;根據(jù)周期性的定義,再在實踐中加以應(yīng)用。

3、情感態(tài)度與價值觀

通過本節(jié)的學習,使同學們對周期現(xiàn)象有一個初步的認識,感受生活中處處有數(shù)學,從而激發(fā)學生的學習積極性,培養(yǎng)學生學好數(shù)學的信心,學會運用聯(lián)系的觀點認識事物。

教學重難點

重點:感受周期現(xiàn)象的存在,會判斷是否為周期現(xiàn)象。

難點:周期函數(shù)概念的理解,以及簡單的應(yīng)用。

教學工具

投影儀

教學過程

【創(chuàng)設(shè)情境,揭示課題】

同學們:我們生活在海南島非常幸福,可以經(jīng)常看到大海,陶冶我們的情操。眾所周知,海水會發(fā)生潮汐現(xiàn)象,大約在每一晝夜的時間里,潮水會漲落兩次,這種現(xiàn)象就是我們今天要學到的周期現(xiàn)象。再比如,[取出一個鐘表,實際操作]我們發(fā)現(xiàn)鐘表上的時針、分針和秒針每經(jīng)過一周就會重復,這也是一種周期現(xiàn)象。所以,我們這節(jié)課要研究的主要內(nèi)容就是周期現(xiàn)象與周期函數(shù)。(板書課題)

【探究新知】

1.我們已經(jīng)知道,潮汐、鐘表都是一種周期現(xiàn)象,請同學們觀察錢塘江潮的圖片(投影圖片),注意波浪是怎樣變化的?可見,波浪每隔一段時間會重復出現(xiàn),這也是一種周期現(xiàn)象。請你舉出生活中存在周期現(xiàn)象的例子。(單擺運動、四季變化等)

(板書:一、我們生活中的周期現(xiàn)象)

2.那么我們怎樣從數(shù)學的角度研究周期現(xiàn)象呢?教師引導學生自主學習課本P3——P4的相關(guān)內(nèi)容,并思考回答下列問題:

①如何理解“散點圖”?

②圖1-1中橫坐標和縱坐標分別表示什么?

③如何理解圖1-1中的“H/m”和“t/h”?

④對于周期函數(shù)的定義,你的理解是怎樣?

以上問題都由學生來回答,教師加以點撥并總結(jié):周期函數(shù)定義的理解要掌握三個條件,即存在不為0的常數(shù)T;x必須是定義域內(nèi)的任意值;f(x+T)=f(x)。

(板書:二、周期函數(shù)的概念)

3.[展示投影]練習:

(1)已知函數(shù)f(x)滿足對定義域內(nèi)的任意x,均存在非零常數(shù)T,使得f(x+T)=f(x)。

求f(x+2T),f(x+3T)

略解:f(x+2T)=f[(x+T)+T]=f(x+T)=f(x)

f(x+3T)=f[(x+2T)+T]=f(x+2T)=f(x)

本題小結(jié),由學生完成,總結(jié)出“周期函數(shù)的周期有無數(shù)個”,教師指出一般情況下,為避免引起混淆,特指最小正周期。

(2)已知函數(shù)f(x)是R上的周期為5的周期函數(shù),且f(1)=2005,求f(11)

略解:f(11)=f(6+5)=f(6)=f(1+5)=f(1)=2005

(3)已知奇函數(shù)f(x)是R上的函數(shù),且f(1)=2,f(x+3)=f(x),求f(8)

略解:f(8)=f(2+2×3)=f(2)=f(-1+3)=f(-1)=-f(1)=-2

【鞏固深化,發(fā)展思維】

1.請同學們先自主學習課本P4倒數(shù)第五行——P5倒數(shù)第四行,然后各個學習小組之間展開合作交流。

2.例題講評

例1.地球圍繞著太陽轉(zhuǎn),地球到太陽的距離y是時間t的函數(shù)嗎?如果是,這個函數(shù)

y=f(t)是不是周期函數(shù)?

例2.圖1-4(見課本)是鐘擺的示意圖,擺心A到鉛垂線MN的距離y是時間t的函數(shù),y=g(t)。根據(jù)鐘擺的知識,容易說明g(t+T)=g(t),其中T為鐘擺擺動一周(往返一次)所需的時間,函數(shù)y=g(t)是周期函數(shù)。若以鐘擺偏離鉛垂線MN的角θ的度數(shù)為變量,根據(jù)物理知識,擺心A到鉛垂線MN的距離y也是θ的周期函數(shù)。

例3.圖1-5(見課本)是水車的示意圖,水車上A點到水面的距離y是時間t的函數(shù)。假設(shè)水車5min轉(zhuǎn)一圈,那么y的值每經(jīng)過5min就會重復出現(xiàn),因此,該函數(shù)是周期函數(shù)。

3.小組課堂作業(yè)

(1)課本P6的思考與交流

(2)(回答)今天是星期三那么7k(k∈Z)天后的那一天是星期幾?7k(k∈Z)天前的那一天是星期幾?100天后的那一天是星期幾?

五、歸納整理,整體認識

(1)請學生回顧本節(jié)課所學過的知識內(nèi)容有哪些?所涉及到的主要數(shù)學思想方法有那些?

(2)在本節(jié)課的學習過程中,還有那些不太明白的地方,請向老師提出。

(3)你在這節(jié)課中的表現(xiàn)怎樣?你的體會是什么?

六、布置作業(yè)

1.作業(yè):習題1.1第1,2,3題.

2.多觀察一些日常生活中的周期現(xiàn)象的例子,進一步理解它的特點.

課后小結(jié)

歸納整理,整體認識

(1)請學生回顧本節(jié)課所學過的知識內(nèi)容有哪些?所涉及到的主要數(shù)學思想方法有那些?

(2)在本節(jié)課的學習過程中,還有那些不太明白的地方,請向老師提出。

(3)你在這節(jié)課中的表現(xiàn)怎樣?你的體會是什么?

課后習題

作業(yè)

1.作業(yè):習題1.1第1,2,3題.

2.多觀察一些日常生活中的周期現(xiàn)象的例子,進一步理解它的特點.

板書

三角函數(shù)單調(diào)性數(shù)學教案2

教學準備

教學目標

1、知識與技能

(1)理解并掌握正弦函數(shù)的定義域、值域、周期性、(小)值、單調(diào)性、奇偶性;

(2)能熟練運用正弦函數(shù)的性質(zhì)解題。

2、過程與方法

通過正弦函數(shù)在R上的圖像,讓學生探索出正弦函數(shù)的性質(zhì);講解例題,總結(jié)方法,鞏固練習。

3、情感態(tài)度與價值觀

通過本節(jié)的學習,培養(yǎng)學生創(chuàng)新能力、探索歸納能力;讓學生體驗自身探索成功的喜悅感,培養(yǎng)學生的自信心;使學生認識到轉(zhuǎn)化“矛盾”是解決問題的有效途經(jīng);培養(yǎng)學生形成實事求是的科學態(tài)度和鍥而不舍的鉆研精神。

教學重難點

重點:正弦函數(shù)的性質(zhì)。

難點:正弦函數(shù)的性質(zhì)應(yīng)用。

教學工具

投影儀

教學過程

【創(chuàng)設(shè)情境,揭示課題】

同學們,我們在數(shù)學一中已經(jīng)學過函數(shù),并掌握了討論一個函數(shù)性質(zhì)的幾個角度,你還記得有哪些嗎?在上一次課中,我們已經(jīng)學習了正弦函數(shù)的y=sinx在R上圖像,下面請同學們根據(jù)圖像一起討論一下它具有哪些性質(zhì)?

【探究新知】

讓學生一邊看投影,一邊仔細觀察正弦曲線的圖像,并思考以下幾個問題:

(1)正弦函數(shù)的定義域是什么?

(2)正弦函數(shù)的值域是什么?

(3)它的最值情況如何?

(4)它的正負值區(qū)間如何分?

(5)?(x)=0的解集是多少?

師生一起歸納得出:

1.定義域:y=sinx的定義域為R

2.值域:引導回憶單位圓中的正弦函數(shù)線,結(jié)論:|sinx|≤1(有界性)

再看正弦函數(shù)線(圖象)驗證上述結(jié)論,所以y=sinx的值域為[-1,1]

三角函數(shù)單調(diào)性數(shù)學教案3

教學目標

會運用圖象判斷單調(diào)性;理解函數(shù)的單調(diào)性,能判斷或證明一些簡單函數(shù)單調(diào)性;注意必須在定義域內(nèi)或其子集內(nèi)討論函數(shù)的單調(diào)性。

重 點

函數(shù)單調(diào)性的證明及判斷。

難 點

函數(shù)單調(diào)性證明及其應(yīng)用。

一、復習引入

1、函數(shù)的定義域、值域、圖象、表示方法

2、函數(shù)單調(diào)性

(1)單調(diào)增函數(shù)

(2)單調(diào)減函數(shù)

(3)單調(diào)區(qū)間

二、例題分析

1、畫出下列函數(shù)圖象,并寫出單調(diào)區(qū)間:

(1) (2) (2)

2、求證:函數(shù) 在區(qū)間 上是單調(diào)增函數(shù)。

3、討論函數(shù) 的單調(diào)性,并證明你的結(jié)論。

變(1)討論函數(shù) 的單調(diào)性,并證明你的結(jié)論

變(2)討論函數(shù) 的單調(diào)性,并證明你的結(jié)論。

4、試判斷函數(shù) 在 上的單調(diào)性。

三、隨堂練習

1、判斷下列說法正確的是 。

(1)若定義在 上的函數(shù) 滿足 ,則函數(shù) 是 上的單調(diào)增函數(shù);

(2)若定義在 上的函數(shù) 滿足 ,則函數(shù) 在 上不是單調(diào)減函數(shù);

(3)若定義在 上的函數(shù) 在區(qū)間 上是單調(diào)增函數(shù),在區(qū)間 上也是單調(diào)增函數(shù),則函數(shù) 是 上的單調(diào)增函數(shù);

(4)若定義在 上的函數(shù) 在區(qū)間 上是單調(diào)增函數(shù),在區(qū)間 上也是單調(diào)增函數(shù),則函數(shù) 是 上的單調(diào)增函數(shù)。

2、若一次函數(shù) 在 上是單調(diào)減函數(shù),則點 在直角坐標平面的( )

A.上半平面 B.下半平面 C.左半平面 D.右半平面

3、函數(shù) 在 上是___ ___;函數(shù) 在 上是__ _____。

3.下圖分別為函數(shù) 和 的圖象,求函數(shù) 和 的單調(diào)增區(qū)間。

4、求證:函數(shù) 是定義域上的單調(diào)減函數(shù)。

四、回顧小結(jié)

1、函數(shù)單調(diào)性的判斷及證明。

課后作業(yè)

一、基礎(chǔ)題

1、求下列函數(shù)的單調(diào)區(qū)間

(1) (2)

2、畫函數(shù) 的圖象,并寫出單調(diào)區(qū)間。

二、提高題

3、求證:函數(shù) 在 上是單調(diào)增函數(shù)。

4、若函數(shù) ,求函數(shù) 的單調(diào)區(qū)間。

5、若函數(shù) 在 上是增函數(shù),在 上是減函數(shù),試比較 與 的大小。

三、能力題

6、已知函數(shù) ,試討論函數(shù)f(x)在區(qū)間 上的單調(diào)性。

變(1)已知函數(shù) ,試討論函數(shù)f(x)在區(qū)間 上的單調(diào)性。

三角函數(shù)單調(diào)性數(shù)學教案4

教學目標

1.使學生理解函數(shù)單調(diào)性的概念,并能判斷一些簡單函數(shù)在給定區(qū)間上的單調(diào)性. 2.通過函數(shù)單調(diào)性概念的教學,培養(yǎng)學生分析問題、認識問題的能力.通過例題培養(yǎng)學生利用定義進行推理的邏輯思維能力.

3.通過本節(jié)課的教學,滲透數(shù)形結(jié)合的數(shù)學思想,對學生進行辯證唯物主義的教育.

教學重點與難點

教學重點:函數(shù)單調(diào)性的概念. 教學難點:函數(shù)單調(diào)性的判定.

教學過程設(shè)計

一、引入新課

師:請同學們觀察下面兩組在相應(yīng)區(qū)間上的函數(shù),然后指出這兩組函數(shù)之間在性質(zhì)上的主要區(qū)別是什么?

(用投影幻燈給出兩組函數(shù)的圖象.) 第一組:

第二組:

生:第一組函數(shù),函數(shù)值y隨x的增大而增大;第二組函數(shù),函數(shù)值y隨x的增大而減小.

師:(手執(zhí)投影棒使之沿曲線移動)對.他(她)答得很好,這正是兩組函數(shù)的主要區(qū)別.當x變大時,第一組函數(shù)的函數(shù)值都變大,而第二組函數(shù)的函數(shù)值都變小.雖然在每一組函數(shù)中,函數(shù)值變大或變小的方式并不相同,但每一組函數(shù)卻具有一種共同的性質(zhì).我們在學習一次函數(shù)、二次函數(shù)、反比例函數(shù)以及冪函數(shù)時,就曾經(jīng)根據(jù)函數(shù)的圖象研究過函數(shù)的函數(shù)值隨自變量的變大而變大或變小的性質(zhì).而這些研究結(jié)論是直觀地由圖象得到的.在函數(shù)的集合中,有很多函數(shù)具有這種性質(zhì),因此我們有必要對函數(shù)這種性質(zhì)作更進一步的一般性的討論和研究,這就是我們今天這一節(jié)課的內(nèi)容.

(點明本節(jié)課的內(nèi)容,既是曾經(jīng)有所認識的,又是新的知識,引起學生的注意.)

二、對概念的分析

(板書課題:函數(shù)的單調(diào)性)

師:請同學們打開課本第51頁,請__同學把增函數(shù)、減函數(shù)、單調(diào)區(qū)間的定義朗讀一遍.

(學生朗讀.)

師:好,請坐.通過剛才閱讀增函數(shù)和減函數(shù)的定義,請同學們思考一個問題:這種定義方法和我們剛才所討論的函數(shù)值y隨自變量x的增大而增大或減小是否一致?如果一致,定義中是怎樣描述的?

生:我認為是一致的.定義中的“當增大而增大;“當

時,都有

時,都有

”描述了y隨x的

”描述了y隨x的增大而減少.

”和“

或師:說得非常正確.定義中用了兩個簡單的不等關(guān)系“”,它刻劃了函數(shù)的單調(diào)遞增或單調(diào)遞減的性質(zhì).這就是數(shù)學的魅力!

(通過教師的情緒感染學生,激發(fā)學生學習數(shù)學的興趣.) 師:現(xiàn)在請同學們和我一起來看剛才的兩組圖中的第一個函數(shù)圖象,體會這種魅力.

(指圖說明.) 師:圖中因此而圖中因此對于區(qū)間[a,b]上的任意,,當

時,都有,的單調(diào)增區(qū)間;,的單調(diào)減區(qū)間. 在區(qū)間[a,b]上是單調(diào)遞增的,區(qū)間[a,b]是函數(shù)對于區(qū)間[a,b]上的任意,,當時,都有在區(qū)間[a,b]上是單調(diào)遞減的,區(qū)間[a,b]是函數(shù)(教師指圖說明分析定義,使學生把函數(shù)單調(diào)性的定義與直觀圖象結(jié)合起來,使新舊知識融為一體,加深對概念的理解.滲透數(shù)形結(jié)合分析問題的數(shù)學思想方法.)

師:因此我們可以說,增函數(shù)就其本質(zhì)而言是在相應(yīng)區(qū)間上較大的自變量對應(yīng)?? (不把話說完,指一名學生接著說完,讓學生的思維始終跟著老師.) 生:較大的函數(shù)值的函數(shù). 師:那么減函數(shù)呢?

生:減函數(shù)就其本質(zhì)而言是在相應(yīng)區(qū)間上較大的自變量對應(yīng)較小的函數(shù)值的函數(shù). (學生可能回答得不完整,教師應(yīng)指導他說完整.) 師:好.我們剛剛以增函數(shù)和減函數(shù)的定義作了初步的分析,通過閱讀和分析你認為在定義中我們應(yīng)該抓住哪些關(guān)鍵詞語,才能更透徹地認識定義?

(學生思索.)

學生在高中階段以至在以后的學習中經(jīng)常會遇到一些概念(或定義),能否抓住定義中的關(guān)鍵詞語,是能否正確地、深入地理解和掌握概念的重要條件,更是學好數(shù)學及其他各學科的重要一環(huán).因此教師應(yīng)該教會學生如何深入理解一個概念,以培養(yǎng)學生分析問題,認識問題的能力.

(教師在學生思索過程中,再一次有感情地朗讀定義,并注意在關(guān)鍵詞語處適當加重語氣.在學生感到無從下手時,給以適當?shù)奶崾?)

生:我認為在定義中,有一個詞“給定區(qū)間”是定義中的關(guān)鍵詞語.

師:很好,我們在學習任何一個概念的時候,都要善于抓住定義中的關(guān)鍵詞語,在學習幾個相近的概念時還要注意區(qū)別它們之間的不同.增函數(shù)和減函數(shù)都是對相應(yīng)的區(qū)間而言的,離開了相應(yīng)的區(qū)間就根本談不上函數(shù)的增減性.請大家思考一個問題,我們能否說一個函數(shù)在x=5時是遞增或遞減的?為什么?

生:不能.因為此時函數(shù)值是一個數(shù).

師:對.函數(shù)在某一點,由于它的函數(shù)值是唯一確定的常數(shù)(注意這四個字“唯一確定”),因而沒有增減的變化.那么,我們能不能脫離區(qū)間泛泛談?wù)撃骋粋€函數(shù)是增函數(shù)或是減函數(shù)呢?你能否舉一個我們學過的例子?

生:不能.比如二次函數(shù)而我們不能說

,在y軸左側(cè)它是減函數(shù),在y軸右側(cè)它是增函數(shù).因是增函數(shù)或是減函數(shù).

的圖像,從“形”上感知.) (在學生回答問題時,教師板演函數(shù)師:好.他(她)舉了一個例子來幫助我們理解定義中的詞語“給定區(qū)間”.這說明函數(shù)的單調(diào)性是函數(shù)在某一個區(qū)間上的性質(zhì),但這不排斥有些函數(shù)在其定義域內(nèi)都是增函數(shù)或減函數(shù).因此,今后我們在談?wù)摵瘮?shù)的增減性時必須指明相應(yīng)的區(qū)間.

師:還有沒有其他的關(guān)鍵詞語?

生:還有定義中的“屬于這個區(qū)間的任意兩個”和“都有”也是關(guān)鍵詞語. 師:你答的很對.能解釋一下為什么嗎? (學生不一定能答全,教師應(yīng)給予必要的提示.) 師:“屬于”是什么意思? 生:就是說兩個自變量生:可以.

師:那么“任意”和“都有”又如何理解?

生:“任意”就是指不能取特定的值來判斷函數(shù)的增減性,而“都有”則是說只要,就必須都小于,或都大于.,

必須取自給定的區(qū)間,不能從其他區(qū)間上取.師:如果是閉區(qū)間的話,能否取自區(qū)間端點?師:能不能構(gòu)造一個反例來說明“任意”呢? (讓學生思考片刻.) 生:可以構(gòu)造一個反例.考察函數(shù),定,顯然,而,在區(qū)間[-2,2]上,如果取兩個特定的值,,有,若由此判是[-2,2]上的減函數(shù),那就錯了. 師:那么如何來說明“都有”呢? 生:在[-2,2]上,當,這時就不能說,時,有;當,時,有,在[-2,2]上是增函數(shù)或減函數(shù).

師:好極了!通過分析定義和舉反例,我們知道要判斷函數(shù)y=f(x)在某個區(qū)間內(nèi)是增函數(shù)或減函數(shù),不能由特定的兩個點的情況來判斷,而必須嚴格依照定義在給定區(qū)間內(nèi)任取兩個自變量,,根據(jù)它們的函數(shù)值和的大小來判定函數(shù)的增減性.

(教師通過一系列的設(shè)問,使學生處于積極的思維狀態(tài),從抽象到具體,并通過反例的反襯,使學生加深對定義的理解.在概念教學中,反例常常幫助學生更深刻地理解概念,鍛煉學生的發(fā)散思維能力.)

師:反過來,如果我們已知f(x)在某個區(qū)間上是增函數(shù)或是減函數(shù),那么,我們就可以通過自變量的大小去判定函數(shù)值的大小,也可以由函數(shù)值的大小去判定自變量的大小.即一般成立則特殊成立,反之,特殊成立,一般不一定成立.這恰是辯證法中一般和特殊的關(guān)系.

(用辯證法的原理來解釋數(shù)學知識,同時用數(shù)學知識去理解辯證法的原理,這樣的分析,有助于深入地理解和掌握概念,分清概念的內(nèi)涵和外延,培養(yǎng)學生學習的能力.)

三、概念的應(yīng)用

例1 圖4所示的是定義在閉區(qū)間[-5,5]上的函數(shù)f(x)的圖象,根據(jù)圖象說出f(x)的單調(diào)區(qū)間,并回答:在每一個單調(diào)區(qū)間上,f(x)是增函數(shù)還是減函數(shù)?

(用投影幻燈給出圖象.)

生甲:函數(shù)y=f(x)在區(qū)間[-5,-2],[1,3]上是減函數(shù),因此[-5,-2],[1,3]是函數(shù)y=f(x)的單調(diào)減區(qū)間;在區(qū)間[-2,1],[3,5]上是增函數(shù),因此[-2,1],[3,5]是函數(shù)y=f(x)的單調(diào)增區(qū)間.

生乙:我有一個問題,[-5,-2]是函數(shù)f(x)的單調(diào)減區(qū)間,那么,是否可認為(-5,-2)也是f(x)的單調(diào)減區(qū)間呢? 師:問得好.這說明你想的很仔細,思考問題很嚴謹.容易證明:若f(x)在[a,b]上單調(diào)(增或減),則f(x)在(a,b)上單調(diào)(增或減).反之不然,你能舉出反例嗎?一般來說.若f(x)在[a,b]上單調(diào)(增或減),且[](增或減).反之不然.

例2 證明函數(shù)f(x)=3x+2在(-∞,+∞)上是增函數(shù).

師:從函數(shù)圖象上觀察函數(shù)的單調(diào)性固然形象,但在理論上不夠嚴格,尤其是有些函數(shù)不易畫出圖象,因此必須學會根據(jù)解析式和定義從數(shù)量上分析辨認,這才是我們研究函數(shù)單調(diào)性的基本途徑.

(指出用定義證明的必要性.)

師:怎樣用定義證明呢?請同學們思考后在筆記本上寫出證明過程.

(教師巡視,并指定一名中等水平的學生在黑板上板演.學生可能會對如何比較和的大小關(guān)系感到無從入手,教師應(yīng)給以啟發(fā).) 師:對于和

我們?nèi)绾伪容^它們的大小呢?我們知道對兩個實數(shù)a,b,如果,][a,b],則f(x)在[,a>b,那么它們的差a-b就大于零;如果a=b,那么它們的差a—b就等于零;如果a<b,那么它們的差a-b就小于零,反之也成立.因此我們可由差的符號來決定兩個數(shù)的大小關(guān)系.< p="">

生:(板演)設(shè),是(-∞,+∞)上任意兩個自變量,當,所以f(x)是增函數(shù).

師:他的證明思路是清楚的.一開始設(shè)設(shè),是(-∞,+∞)內(nèi)任意兩個自變量,并時,

(邊說邊用彩色粉筆在相應(yīng)的語句下劃線,并標注“①→設(shè)”),然后看,這一步是證明的關(guān)鍵,再對式子進行變形,一般方法是分解因式或配成完全平方的形式,這一步可概括為“作差,變形”(同上,劃線并標注”②→作差,變形”).但美中不足的是他沒能說明為什么

<0,沒有用到開始的假設(shè)“”,不要以為其顯而易見,在這里一定要對變形后的式子說明其符號.應(yīng)寫明“因為x1<x2,所以,從而<0,即.”這一步可概括為“定符號”(在黑板上板演,并注明“③→定符號”).最后,作為證明題一定要有結(jié)論,我們把它稱之為第四步“下結(jié)論”(在相應(yīng)位置標注“④→下結(jié)論”).< p="">

這就是我們用定義證明函數(shù)增減性的四個步驟,請同學們記住.需要指出的是第二步,如果函數(shù)y=f(x)在給定區(qū)間上恒大于零,也可以

小.

(對學生的做法進行分析,把證明過程步驟化,可以形成思維的定勢.在學生剛剛接觸一個新的知識時,思維定勢對理解知識本身是有益的,同時對學生養(yǎng)成一定的思維習慣,形成一定的解題思路也是有幫助的.)

調(diào)函數(shù)嗎?并用定義證明你的結(jié)論.

師:你的結(jié)論是什么呢?

上都是減函數(shù),因此我覺得它在定義域(-∞,0)∪(0,+∞)上是減函數(shù). 生乙:我有不同的意見,我認為這個函數(shù)不是整個定義域內(nèi)的減函數(shù),因為它不符合減函數(shù)的定義.比如取x1∈(-∞,0),取x2∈(0,+∞),,顯然有,而不是顯然成立,而,,因此它不是定義域內(nèi)的減函數(shù).

生:也不能這樣認為,因為由圖象可知,它分別在(-∞,0)和(0,+∞)上都是減函數(shù).

域內(nèi)的增函數(shù),也不是定義域內(nèi)的減函數(shù),它在(-∞,0)和(0,+∞)每一個單調(diào)區(qū)間內(nèi)都是減函數(shù).因此在函數(shù)的幾個單調(diào)增(減)區(qū)間之間不要用符號“∪”連接.另外,x=0不是定義域中的元素,此時不要寫成閉區(qū)間.

上是減函數(shù).

(教師巡視.對學生證明中出現(xiàn)的問題給予點拔.可依據(jù)學生的問題,給出下面的提示: (1)分式問題化簡方法一般是通分. (2)要說明三個代數(shù)式的符號:k,,.

要注意在不等式兩邊同乘以一個負數(shù)的時候,不等號方向要改變.

對學生的解答進行簡單的分析小結(jié),點出學生在證明過程中所出現(xiàn)的問題,引起全體學生的重視.)

四、課堂小結(jié)

師:請同學小結(jié)一下這節(jié)課的主要內(nèi)容,有哪些是應(yīng)該特別注意的? (請一個思路清晰,善于表達的學生口述,教師可從中給予提示.)

生:這節(jié)課我們學習了函數(shù)單調(diào)性的定義,要特別注意定義中“給定區(qū)間”、“屬于”、“任意”、“都有”這幾個關(guān)鍵詞語;在寫單調(diào)區(qū)間時不要輕易用并集的符號連接;最后在用定義證明函數(shù)的單調(diào)性時,應(yīng)該注意證明的四個步驟.

五、作業(yè)1.課本P53練習第1,2,3,4題.數(shù)..(_)+b>0.由此可知(_)式小于0,即.課堂教學設(shè)計說明函數(shù)的單調(diào)性是函數(shù)的一個重要性質(zhì),是研究函數(shù)時經(jīng)常要注意的一個性質(zhì).并且在比較幾個數(shù)的大小、對函數(shù)作定性分析、以及與其他知識的綜合應(yīng)用上都有廣泛的應(yīng)用.對學生來說,函數(shù)的單調(diào)性早已有所知,然而沒有給出過定義,只是從直觀上接觸過這一性質(zhì).學生對此有一定的感性認識,對概念的理解有一定好處,但另一方面學生也會覺得是已經(jīng)學過的知識,感覺乏味.因此,在設(shè)計教案時,加強了對概念的分析,希望能夠使學生認識到看似簡單的定義中有不少值得去推敲、去琢磨的東西,其中甚至包含著辯證法的原理.

另外,對概念的分析是在引進一個新概念時必須要做的,對概念的深入的正確的理解往往是學生認知過程中的難點.因此在本教案的設(shè)計過程中突出對概念的分析不僅僅是為了分析函數(shù)單調(diào)性的定義,而且想讓學生對如何學會、弄懂一個概念有初步的認識,并且在以后的學習中學有所用.

還有,使用函數(shù)單調(diào)性定義證明是一個難點,學生剛剛接觸這種證明方法,給出一定的步驟是必要的,有利于學生理解概念,也可以對學生掌握證明方法、形成證明思路有所幫助.另外,這也是以后要學習的不等式證明方法中的比較化的基本思路,現(xiàn)在提出要求,對今后的教學作一定的鋪墊.

三角函數(shù)單調(diào)性數(shù)學教案5

函數(shù)單調(diào)性是學生進入高中后較早接觸到的一個完全形式化的抽象定義,對于仍然處于經(jīng)驗型邏輯思維發(fā)展階段的高一學生來講,有較大的學習難度。一直以來,這節(jié)課也都是老師教學的難點。最近,在我區(qū)“青年教師評優(yōu)課”上,聽了多名教師對這節(jié)課不同風格的課堂教學,通過對他們教學案例的研究和思考,筆者認為,在函數(shù)單調(diào)性概念的教學中,關(guān)鍵是把握住如下三個關(guān)鍵點。

關(guān)鍵點1。學生 學習函數(shù)單調(diào)性的認知基礎(chǔ)是什么?

在這個內(nèi)容之前,已經(jīng)教學過一次函數(shù)、二次函數(shù)、反比例函數(shù)等簡單函數(shù),函數(shù)的變量定義和映射定義,以及函數(shù)的表示。對函數(shù)是一個刻畫某些運動變化數(shù)量關(guān)系的數(shù)學概念,也已經(jīng)形成初步認識。接踵而來的任務(wù)是對函數(shù)應(yīng)該繼續(xù)研究什么。在數(shù)學研究中,建立一個數(shù)學概念的意義就是揭示它的本質(zhì)特征,即共同屬性或不變屬性。對各種函數(shù)模型而言,就是研究它們所描述的運動關(guān)系的變化規(guī)律,也就是這些運動關(guān)系在變化之中的共同屬性或不變屬性,即“變中不變”的性質(zhì)。按照這種科學研究的思維方式,使得當前來討論函數(shù)的一些性質(zhì),就成為順理成章的、必要的和有意義的數(shù)學活動。至于在多種函數(shù)性質(zhì)中,選擇這個時機來討論函數(shù)的單調(diào)性而不是其他性質(zhì),是因為函數(shù)的單調(diào)性是學生從已經(jīng)學習的函數(shù)中比較容易發(fā)現(xiàn)的一個性質(zhì)。

就中小學生與單調(diào)性相關(guān)的經(jīng)歷而言,學生認識函數(shù)單調(diào)性可以分為四個階段: 第一階段,經(jīng)驗感知階段(小學階段),知道一個量隨另一個量的變化而變化的具體情境,如“隨著年齡的增長,我的個子越來越高”,“我認識的字越多,我的知識就越多”等。

第二階段,形象描述階段(初中階段),能用抽象的語言描述一個量隨另一個量變化的趨勢,如“y隨著x的增大而減少”。

第三階段,抽象概括階段(高中必修1),能進行脫離具體和直觀對象的抽象化、符號化的概括,并通過具體函數(shù),初步體會單調(diào)性在研究函數(shù)變化中的作用。

第四階段,認識提升階段(高中選修系列

1、2),要求學生能初步認識導數(shù)與單調(diào)性的聯(lián)系。

基于上述認識,函數(shù)單調(diào)性教學的引入應(yīng)該從學生的已有認知出發(fā),建立在學生初中已學的一次函數(shù)、二次函數(shù)以及反比例函數(shù)的基礎(chǔ)上,即從學生熟悉的常見函數(shù)的圖象出發(fā),直觀感知函數(shù)的單調(diào)性,完成對函數(shù)單調(diào)性定義的第一次認識.。

讓學生分別作出函數(shù)數(shù)值有什么變化規(guī)律?

的圖象,并且觀察自變量變化時,函在學生畫圖的基礎(chǔ)上,引導學生觀察圖象,獲得信息:第一個圖象從左向右逐漸上升,y隨x的增大而增大;第二個圖象從左向右逐漸下降,y隨x的增大而減小.然后讓學生明確,對于自變量變化時,函數(shù)值具有這兩種變化規(guī)律的函數(shù),我們分別稱為增函數(shù)和減函數(shù). 第三個函數(shù)圖象的上升與下降要分段說明,通過討論使學生明確函數(shù)的單調(diào)性是對定義域內(nèi)某個區(qū)間而言的.

在此基礎(chǔ)上,教師引導學生用自己的語言描述增函數(shù)的定義: 如果函數(shù)在某個區(qū)間上的圖象從左向右逐漸上升,或者如果函數(shù)

在某個區(qū)間上隨自變量x的增大,y也越來越大,我們說函數(shù)在該區(qū)間上為增函數(shù).

關(guān)鍵點2。為什么要用數(shù)學的符號語言定義函數(shù)的單調(diào)性概念?

對于函數(shù)單調(diào)性概念的教學而言,有一個很重要的問題,即為什么要進一步形式化。學生在初中已經(jīng)接觸過一次函數(shù)、反比例函數(shù)、二次函數(shù),對函數(shù)的增減性已有初步的認識:隨x增大y增大是增函數(shù),隨x增大y 減小是減函數(shù)。這個觀念對他們而言是易于接受的,很形象,他們會覺得這樣的定義很好,為什么還要費神去進行符號化呢?如果教師能通過教學設(shè)計,讓學生感受到進一步符號化、形式化的必要性,造成認知沖突,則學生研究的興趣就會大大提高,主動性也會更強。其實,數(shù)學概念就是一系列常識不斷精微化的結(jié)果,之所以要進一步形式化,完全是數(shù)學精確性、嚴密性的要求,因為只有達到這種符號化、形式化的程度,才可以進行準確的計算,進行推理論證。

所以,在教學中提出類似如下的問題是非常必要的:

右圖是函數(shù)函數(shù)嗎?

的圖象,能說出這個函數(shù)分別在哪個區(qū)間為增函數(shù)和減

對于這個問題,學生的困難是難以確定分界點的確切位置.通過討論,使學生感受到用函數(shù)圖象判斷函數(shù)單調(diào)性雖然比較直觀,但有時不夠精確,需要結(jié)合解析式進行嚴密化、精確化的研究,使學生體會到用數(shù)量大小關(guān)系嚴格表述函數(shù)單調(diào)性的必要性,從而將函數(shù)的單調(diào)性研究從研究函數(shù)圖象過渡到研究函數(shù)的解析式. 關(guān)鍵點3:如何用形式化的語言定義函數(shù)的單調(diào)性?

從數(shù)學學科這個整體來看,數(shù)學的高度抽象性造成了數(shù)學的難懂、難教、難學,解決這一問題的基本途徑是順應(yīng)學習者的認知規(guī)律:在需要和可能的情況下,盡量做到從直觀入手,從具體開始,逐步抽象,即數(shù)學的思考方式。恰當運用圖形語言、自然語言和符號化的形式語言,并進行三者之間必要的轉(zhuǎn)化,可以說,這是學習數(shù)學的基本思考方式。而函數(shù)單調(diào)性這一內(nèi)容正是體現(xiàn)數(shù)學基本思考方式的一個良好載體,教學中應(yīng)該充分關(guān)注到這一點。長此以往,便可使學生在學習知識的同時,學到比知識更重要的東西—學會如何思考?如何進行數(shù)學的思考?

一般說,對函數(shù)單調(diào)性的建構(gòu)有兩個重要過程,一是建構(gòu)函數(shù)單調(diào)性的意義,二是通過思維構(gòu)造把這個意義用數(shù)學的形式化語言加以描述。對函數(shù)單調(diào)性的意義,學生通過對若干函數(shù)圖象的觀察并不難認識,因此,前一過程的建構(gòu)學習相對比較容易進行。后一過程的進行則有相當?shù)碾y度,其難就難在用數(shù)學的符合語言來描述函數(shù)單調(diào)性的定義時,如何才能最大限度地通過學生自己的思維活動來完成。這其中有兩個難點:

(1)“x增大”如何用符號表示;同樣,“f(x)增大”如何用符號表示。 (2)“‘隨著’x增大,函數(shù)f(x)‘也’增大”,如何用符號表示。

用數(shù)學符號描述這兩種數(shù)學意義的最大要害之處,在于要用數(shù)學的符號來描述動態(tài)的數(shù)學對象。

在初中數(shù)學中,除了學習函數(shù)的初級概念,用y=f(x)表示函數(shù)y隨著自變量x的變化而變化時,接觸到一點動態(tài)數(shù)學對象的數(shù)學符號表示以外,絕大多數(shù)都是用數(shù)學符號表示靜態(tài)的數(shù)學對象。因此,從用靜態(tài)的數(shù)學符號描述靜態(tài)的數(shù)學對象,到用靜態(tài)的符號語言刻畫動態(tài)數(shù)學對象,在思維能力層次上存在重大差異,對剛剛由初中進入高中學習的學生而言,無疑是一個很大的挑戰(zhàn)!


精選圖文

221381
Z范文網(wǎng)、范文協(xié)會網(wǎng)、范文檔案館、