正確區(qū)分等腰三角形的判定與性質(zhì),能夠利用等腰三角形的判定定理證明線段的相等關(guān)系.一起看看初一數(shù)學(xué)平方根教案!歡迎查閱!
初一數(shù)學(xué)平方根教案1
教學(xué)目標(biāo)
1、 理解并掌握等腰三角形的判定定理及推論
2、 能利用其性質(zhì)與判定證明線段或角的相等關(guān)系.
教學(xué)重點(diǎn): 等腰三角形的判定定理及推論的運(yùn)用
教學(xué)難點(diǎn): 正確區(qū)分等腰三角形的判定與性質(zhì),能夠利用等腰三角形的判定定理證明線段的相等關(guān)系.
教學(xué)過程:
一、復(fù)習(xí)等腰三角形的性質(zhì)
二、新授:
I提出問題,創(chuàng)設(shè)情境
出示投影片.某地質(zhì)專家為估測(cè)一條東西流向河流的寬度,選擇河流北岸上一棵樹(B點(diǎn))為B標(biāo),然后在這棵樹的正南方(南岸A點(diǎn)抽一小旗作標(biāo)志)沿南偏東60°方向走一段距離到C處時(shí),測(cè)得∠ACB為30°,這時(shí),地質(zhì)專家測(cè)得AC的長(zhǎng)度就可知河流寬度.
學(xué)生們很想知道,這樣估測(cè)河流寬度的根據(jù)是什么?帶著這個(gè)問題,引導(dǎo)學(xué)生學(xué)習(xí)“等腰三角形的判定”.
II引入新課
1.由性質(zhì)定理的題設(shè)和結(jié)論的變化,引出研究的內(nèi)容——在△ABC中,苦∠B=∠C,則AB= AC嗎?
作一個(gè)兩個(gè)角相等的三角形,然后觀察兩等角所對(duì)的邊有什么關(guān)系?
2.引導(dǎo)學(xué)生根據(jù)圖形,寫出已知、求證.
2、小結(jié),通過論證,這個(gè)命題是真命題,即“等腰三角形的判定定理”(板書定理名稱).
強(qiáng)調(diào)此定理是在一個(gè)三角形中把角的相等關(guān)系轉(zhuǎn)化成邊的相等關(guān)系的重要依據(jù),類似于性質(zhì)定理可簡(jiǎn)稱“等角對(duì)等邊”.
4.引導(dǎo)學(xué)生說出引例中地質(zhì)專家的測(cè)量方法的根據(jù).
III例題與練習(xí)
1.如圖2
其中△ABC是等腰三角形的是 [ ]
2.①如圖3,已知△ABC中,AB=AC.∠A=36°,則∠C______(根據(jù)什么?).
②如圖4,已知△ABC中,∠A=36°,∠C=72°,△ABC是______三角形(根據(jù)什么?).
③若已知∠A=36°,∠C=72°,BD平分∠ABC交AC于D,判斷圖5中等腰三角形有______.
④若已知 AD=4cm,則BC______cm.
3.以問題形式引出推論l______.
4.以問題形式引出推論2______.
例: 如果三角形一個(gè)外角的平分線平行于三角形的一邊,求證這個(gè)三角形是等腰三角形.
分析:引導(dǎo)學(xué)生根據(jù)題意作出圖形,寫出已知、求證,并分析證明.
練習(xí):5.(l)如圖6,在△ABC中,AB=AC,∠ABC、∠ACB的平分線相交于點(diǎn)F,過F作DE//BC,交AB于點(diǎn)D,交AC于E.問圖中哪些三角形是等腰三角形?
(2)上題中,若去掉條件AB=AC,其他條件不變,圖6中還有等腰三角形嗎?
練習(xí):P53練習(xí)1、2、3。
IV課堂小結(jié)
1.判定一個(gè)三角形是等腰三角形有幾種方法?
2.判定一個(gè)三角形是等邊三角形有幾種方法?
3.等腰三角形的性質(zhì)定理與判定定理有何關(guān)系?
4.現(xiàn)在證明線段相等問題,一般應(yīng)從幾方面考慮?
V布置作業(yè):P56頁習(xí)題12.3第5、6題
初一數(shù)學(xué)平方根教案2
教學(xué)目的
1. 使學(xué)生熟練地運(yùn)用等腰三角形的性質(zhì)求等腰三角形內(nèi)角的角度。
2. 熟識(shí)等邊三角形的性質(zhì)及判定.
2.通過例題教學(xué),幫助學(xué)生總結(jié)代數(shù)法求幾何角度,線段長(zhǎng)度的方法。
教學(xué)重點(diǎn): 等腰三角形的性質(zhì)及其應(yīng)用。
教學(xué)難點(diǎn): 簡(jiǎn)潔的邏輯推理。
教學(xué)過程
一、復(fù)習(xí)鞏固
1.敘述等腰三角形的性質(zhì),它是怎么得到的?
等腰三角形的兩個(gè)底角相等,也可以簡(jiǎn)稱“等邊對(duì)等角”。把等腰三角形對(duì)折,折疊兩部分是互相重合的,即AB與AC重合,點(diǎn)B與點(diǎn) C重合,線段BD與CD也重合,所以∠B=∠C。
等腰三角形的頂角平分線,底邊上的中線和底邊上的高線互相重合,簡(jiǎn)稱“三線合一”。由于AD為等腰三角形的對(duì)稱軸,所以BD= CD,AD為底邊上的中線;∠BAD=∠CAD,AD為頂角平分線,∠ADB=∠ADC=90°,AD又為底邊上的高,因此“三線合一”。
2.若等腰三角形的兩邊長(zhǎng)為3和4,則其周長(zhǎng)為多少?
二、新課
在等腰三角形中,有一種特殊的情況,就是底邊與腰相等,這時(shí),三角形三邊都相等。我們把三條邊都相等的三角形叫做等邊三角形。
等邊三角形具有什么性質(zhì)呢?
1.請(qǐng)同學(xué)們畫一個(gè)等邊三角形,用量角器量出各個(gè)內(nèi)角的度數(shù),并提出猜想。
2.你能否用已知的知識(shí),通過推理得到你的猜想是正確的?
等邊三角形是特殊的等腰三角形,由等腰三角形等邊對(duì)等角的性質(zhì)得到∠A=∠B=C,又由∠A+∠B+∠C=180°,從而推出∠A=∠B=∠C=60°。
3.上面的條件和結(jié)論如何敘述?
等邊三角形的各角都相等,并且每一個(gè)角都等于60°。
等邊三角形是軸對(duì)稱圖形嗎?如果是,有幾條對(duì)稱軸?
等邊三角形也稱為正三角形。
例1.在△ABC中,AB=AC,D是BC邊上的中點(diǎn),∠B=30°,求∠1和∠ADC的度數(shù)。
分析:由AB=AC,D為BC的中點(diǎn),可知AB為 BC底邊上的中線,由“三線合一”可知AD是△ABC的頂角平分線,底邊上的高,從而∠ADC=90°,∠l=∠BAC,由于∠C=∠B=30°,∠BAC可求,所以∠1可求。
問題1:本題若將D是BC邊上的中點(diǎn)這一條件改為AD為等腰三角形頂角平分線或底邊BC上的高線,其它條件不變,計(jì)算的結(jié)果是否一樣?
問題2:求∠1是否還有其它方法?
三、練習(xí)鞏固
1.判斷下列命題,對(duì)的打“√”,錯(cuò)的打“×”。
a.等腰三角形的角平分線,中線和高互相重合( )
b.有一個(gè)角是60°的等腰三角形,其它兩個(gè)內(nèi)角也為60°( )
2.如圖(2),在△ABC中,已知AB=AC,AD為∠BAC的平分線,且∠2=25°,求∠ADB和∠B的度數(shù)。
3.P54練習(xí)1、2。
四、小結(jié)
由等腰三角形的性質(zhì)可以推出等邊三角形的各角相等,且都為60°?!叭€合一”性質(zhì)在實(shí)際應(yīng)用中,只要推出其中一個(gè)結(jié)論成立,其他兩個(gè)結(jié)論一樣成立,所以關(guān)鍵是尋找其中一個(gè)結(jié)論成立的條件。
五、作業(yè): 1.課本P57第7,9題。
2、補(bǔ)充:如圖(3),△ABC是等邊三角形,BD、CE是中線,求∠CBD,∠BOE,∠BOC,∠EOD的度數(shù)。
初一數(shù)學(xué)平方根教案3
教學(xué)目標(biāo)
1.掌握等邊三角形的性質(zhì)和判定方法. 2.培養(yǎng)分析問題、解決問題的能力.
教學(xué)重點(diǎn):等邊三角形的性質(zhì)和判定方法.
教學(xué)難點(diǎn):等邊三角形性質(zhì)的應(yīng)用
教學(xué)過程
I創(chuàng)設(shè)情境,提出問題
回顧上節(jié)課講過的等邊三角形的有關(guān)知識(shí)
1.等邊三角形是軸對(duì)稱圖形,它有三條對(duì)稱軸.
2.等邊三角形每一個(gè)角相等,都等于60°
3.三個(gè)角都相等的三角形是等邊三角形.
4.有一個(gè)角是60°的等腰三角形是等邊三角形.
其中1、2是等邊三角形的性質(zhì);3、4的等邊三角形的判斷方法.
II例題與練習(xí)
1.△ABC是等邊三角形,以下三種方法分別得到的△ADE都是等邊三角形嗎,為什么?
①在邊AB、AC上分別截取AD=AE.
②作∠ADE=60°,D、E分別在邊AB、AC上.
③過邊AB上D點(diǎn)作DE∥BC,交邊AC于E點(diǎn).
2. 已知:如右圖,P、Q是△ABC的邊BC上的兩點(diǎn),,并且PB=PQ=QC=AP=AQ.求∠BAC的大小.
分析:由已知顯然可知三角形APQ是等邊三角形,每個(gè)角都是60°.又知△APB與△AQC都是等腰三角形,兩底角相等,由三角形外角性質(zhì)即可推得∠PAB=30°.
3. P56頁練習(xí)1、2
III課堂小結(jié):1.等腰三角形和性質(zhì);等腰三角形的條件
V布置作業(yè): 1.P58頁習(xí)題12.3第ll題.
2.已知等邊△ABC,求平面內(nèi)一點(diǎn)P,滿足A,B,C,P四點(diǎn)中的任意三點(diǎn)連線都構(gòu)成等腰三角形.這樣的點(diǎn)有多少個(gè)?
初一數(shù)學(xué)平方根教案4
教學(xué)過程
一、 復(fù)習(xí)等腰三角形的判定與性質(zhì)
二、 新授:
1.等邊三角形的性質(zhì):三邊相等;三角都是60°;三邊上的中線、高、角平分線相等
2.等邊三角形的判定:
三個(gè)角都相等的三角形是等邊三角形;有一個(gè)角是60°的等腰三角形是等邊三角形;
在直角三角形中,如果一個(gè)銳角等于30°,那么它所對(duì)的直角邊等于斜邊的一半
注意:推論1是判定一個(gè)三角形為等邊三角形的一個(gè)重要方法.推論2說明在等腰三角形中,只要有一個(gè)角是600,不論這個(gè)角是頂角還是底角,就可以判定這個(gè)三角形是等邊三角形。推論3反映的是直角三角形中邊與角之間的關(guān)系.
3.由學(xué)生解答課本148頁的例子;
4.補(bǔ)充:已知如圖所示, 在△ABC中, BD是AC邊上的中線, DB⊥BC于B,
∠ABC=120o, 求證: AB=2BC
分析 由已知條件可得∠ABD=30o, 如能構(gòu)造有一個(gè)銳角是30o的直角三角形, 斜邊是AB,30o角所對(duì)的邊是與BC相等的線段,問題就得到解決了.
初一數(shù)學(xué)平方根教案5
教學(xué)目標(biāo):
知識(shí)與技能
1.掌握直角三角形的判別條件,并能進(jìn)行簡(jiǎn)單應(yīng)用;
2.進(jìn)一步發(fā)展數(shù)感,增加對(duì)勾股數(shù)的直觀體驗(yàn),培養(yǎng)從實(shí)際問題抽象出數(shù)學(xué)問題的能力,建立數(shù)學(xué)模型.
3.會(huì)通過邊長(zhǎng)判斷一個(gè)三角形是否是直角三角形,并會(huì)辨析哪些問題應(yīng)用哪個(gè)結(jié)論.
情感態(tài)度與價(jià)值觀
敢于面對(duì)數(shù)學(xué)學(xué)習(xí)中的困難,并有獨(dú)立克服困難和運(yùn)用知識(shí)解決問題的成功經(jīng)驗(yàn),進(jìn)一步體會(huì)數(shù)學(xué)的應(yīng)用價(jià)值,發(fā)展運(yùn)用數(shù)學(xué)的信心和能力,初步形成積極參與數(shù)學(xué)活動(dòng)的意識(shí).
教學(xué)重點(diǎn)
運(yùn)用身邊熟悉的事物,從多種角度發(fā)展數(shù)感,會(huì)通過邊長(zhǎng)判斷一個(gè)三角形是否是直角三角形,并會(huì)辨析哪些問題應(yīng)用哪個(gè)結(jié)論.
教學(xué)難點(diǎn)
會(huì)辨析哪些問題應(yīng)用哪個(gè)結(jié)論.
課前準(zhǔn)備
標(biāo)有單位長(zhǎng)度的細(xì)繩、三角板、量角器、題篇
教學(xué)過程:
復(fù)習(xí)引入:
請(qǐng)學(xué)生復(fù)述勾股定理;使用勾股定理的前提條件是什么?
已知△ABC的兩邊AB=5,AC=12,則BC=13對(duì)嗎?
創(chuàng)設(shè)問題情景:由課前準(zhǔn)備好的一組學(xué)生以小品的形式演示教材第9頁古埃及造直角的方法.
這樣做得到的是一個(gè)直角三角形嗎?
提出課題:能得到直角三角形嗎
講授新課:
⒈如何來判斷?(用直角三角板檢驗(yàn))
這個(gè)三角形的三邊分別是多少?(一份視為1)它們之間存在著怎樣的關(guān)系?
就是說,如果三角形的三邊為 , , ,請(qǐng)猜想在什么條件下,以這三邊組成的三角形是直角三角形?(當(dāng)滿足較小兩邊的平方和等于較大邊的平方時(shí))
⒉繼續(xù)嘗試:下面的三組數(shù)分別是一個(gè)三角形的三邊長(zhǎng)a,b,c:
5,12,13; 6, 8, 10; 8,15,17.
(1)這三組數(shù)都滿足a2 +b2=c2嗎?
(2)分別以每組數(shù)為三邊長(zhǎng)作出三角形,用量角器量一量,它們都是直角三角形嗎?
⒊直角三角形判定定理:如果三角形的三邊長(zhǎng)a,b,c滿足a2 +b2=c2 ,那么這個(gè)三角形是直角三角形.
滿足a2 +b2=c2的三個(gè)正整數(shù),稱為勾股數(shù).
⒋例1 一個(gè)零件的形狀如左圖所示,按規(guī)定這個(gè)零件中 ∠A和∠DBC都應(yīng)為直角.工人師傅量得這個(gè)零件各邊尺寸如右圖所示,這個(gè)零件符合要求嗎?
隨堂練習(xí):
⒈下列幾組數(shù)能否作為直角三角形的三邊長(zhǎng)?說說你的理由.
⑴9,12,15; ⑵15,36,39;
⑶12,35,36; ⑷12,18,22.
⒉已知?ABC中BC=41, AC=40, AB=9, 則此三角形為_______三角形, ______是角.
⒊四邊形ABCD中已知AB=3,BC=4,CD=12,DA=13,且∠ABC=900,求這個(gè)四邊形的面積.
⒋習(xí)題1.3
課堂小結(jié):
⒈直角三角形判定定理:如果三角形的三邊長(zhǎng)a,b,c滿足a2 +b2=c2 ,那么這個(gè)三角形是直角三角形.
⒉滿足a2 +b2=c2的三個(gè)正整數(shù),稱為勾股數(shù).勾股數(shù)擴(kuò)大相同倍數(shù)后,仍為勾股數(shù).