中文字幕人妻色偷偷久久_天天鲁一鲁摸一摸爽一爽_最新亚洲人成网站在线观看_999久久久免费精品国产_久久精品丝袜高跟鞋

歡迎訪一網(wǎng)寶!您身邊的知識(shí)小幫手,專注做最新的學(xué)習(xí)參考資料!

初一有理數(shù)加減法教案

一網(wǎng)寶 分享 時(shí)間: 加入收藏 我要投稿 點(diǎn)贊

教案是教師為順利而有效地開(kāi)展教學(xué)活動(dòng),根據(jù)課程標(biāo)準(zhǔn),教學(xué)大綱和教科書(shū)要求及學(xué)生的實(shí)際情況,以課時(shí)或課題為單位,一起看看初一正數(shù)和負(fù)數(shù)的教案!歡迎查閱!

初一正數(shù)和負(fù)數(shù)的教案1

理解一元二次方程求根公式的推導(dǎo)過(guò)程,了解公式法的概念,會(huì)熟練應(yīng)用公式法解一元二次方程.

復(fù)習(xí)具體數(shù)字的一元二次方程配方法的解題過(guò)程,引入ax2+bx+c=0(a≠0)的求根公式的推導(dǎo),并應(yīng)用公式法解一元二次方程.

重點(diǎn)

求根公式的推導(dǎo)和公式法的應(yīng)用.

難點(diǎn)

一元二次方程求根公式的推導(dǎo).

一、復(fù)習(xí)引入

1.前面我們學(xué)習(xí)過(guò)解一元二次方程的“直接開(kāi)平方法”,比如,方程

(1)x2=4 (2)(x-2)2=7

提問(wèn)1 這種解法的(理論)依據(jù)是什么?

提問(wèn)2 這種解法的局限性是什么?(只對(duì)那種“平方式等于非負(fù)數(shù)”的特殊二次方程有效,不能實(shí)施于一般形式的二次方程.)

2.面對(duì)這種局限性,怎么辦?(使用配方法,把一般形式的二次方程配方成能夠“直接開(kāi)平方”的形式.)

(學(xué)生活動(dòng))用配方法解方程 2x2+3=7x

(老師點(diǎn)評(píng))略

總結(jié)用配方法解一元二次方程的步驟(學(xué)生總結(jié),老師點(diǎn)評(píng)).

(1)先將已知方程化為一般形式;

(2)化二次項(xiàng)系數(shù)為1;

(3)常數(shù)項(xiàng)移到右邊;

(4)方程兩邊都加上一次項(xiàng)系數(shù)的一半的平方,使左邊配成一個(gè)完全平方式;

(5)變形為(x+p)2=q的形式,如果q≥0,方程的根是x=-p±q;如果q<0,方程無(wú)實(shí)根.

二、探索新知

用配方法解方程:

(1)ax2-7x+3=0 (2)ax2+bx+3=0

如果這個(gè)一元二次方程是一般形式ax2+bx+c=0(a≠0),你能否用上面配方法的步驟求出它們的兩根,請(qǐng)同學(xué)獨(dú)立完成下面這個(gè)問(wèn)題.

問(wèn)題:已知ax2+bx+c=0(a≠0),試推導(dǎo)它的兩個(gè)根x1=-b+b2-4ac2a,x2=-b-b2-4ac2a(這個(gè)方程一定有解嗎?什么情況下有解?)

分析:因?yàn)榍懊婢唧w數(shù)字已做得很多,我們現(xiàn)在不妨把a(bǔ),b,c也當(dāng)成一個(gè)具體數(shù)字,根據(jù)上面的解題步驟就可以一直推下去.

解:移項(xiàng),得:ax2+bx=-c

二次項(xiàng)系數(shù)化為1,得x2+bax=-ca

配方,得:x2+bax+(b2a)2=-ca+(b2a)2

即(x+b2a)2=b2-4ac4a2

∵4a2>0,當(dāng)b2-4ac≥0時(shí),b2-4ac4a2≥0

∴(x+b2a)2=(b2-4ac2a)2

直接開(kāi)平方,得:x+b2a=±b2-4ac2a

即x=-b±b2-4ac2a

∴x1=-b+b2-4ac2a,x2=-b-b2-4ac2a

由上可知,一元二次方程ax2+bx+c=0(a≠0)的根由方程的系數(shù)a,b,c而定,因此:

(1)解一元二次方程時(shí),可以先將方程化為一般形式ax2+bx+c=0,當(dāng)b2-4ac≥0時(shí),將a,b,c代入式子x=-b±b2-4ac2a就得到方程的根.

(2)這個(gè)式子叫做一元二次方程的求根公式.

(3)利用求根公式解一元二次方程的方法叫公式法.

公式的理解

(4)由求根公式可知,一元二次方程最多有兩個(gè)實(shí)數(shù)根.

例1 用公式法解下列方程:

(1)2x2-x-1=0 (2)x2+1.5=-3x

(3)x2-2x+12=0 (4)4x2-3x+2=0

分析:用公式法解一元二次方程,首先應(yīng)把它化為一般形式,然后代入公式即可.

補(bǔ):(5)(x-2)(3x-5)=0

三、鞏固練習(xí)

教材第12頁(yè) 練習(xí)1.(1)(3)(5)或(2)(4)(6).

四、課堂小結(jié)

本節(jié)課應(yīng)掌握:

(1)求根公式的概念及其推導(dǎo)過(guò)程;

(2)公式法的概念;

(3)應(yīng)用公式法解一元二次方程的步驟:1)將所給的方程變成一般形式,注意移項(xiàng)要變號(hào),盡量讓a>0;2)找出系數(shù)a,b,c,注意各項(xiàng)的系數(shù)包括符號(hào);3)計(jì)算b2-4ac,若結(jié)果為負(fù)數(shù),方程無(wú)解;4)若結(jié)果為非負(fù)數(shù),代入求根公式,算出結(jié)果.

(4)初步了解一元二次方程根的情況.

五、作業(yè)布置

教材第17頁(yè) 習(xí)題4

初一正數(shù)和負(fù)數(shù)的教案2

一、創(chuàng)設(shè)情境 導(dǎo)入新課

1、介紹七巧板

師:你們玩過(guò)七巧板嗎?你知道七巧板是由哪些不同的圖形組成的嗎?

一千多年前,中國(guó)人發(fā)明了七巧板。七巧板是由七塊圖形組成的,它可以拼出豐富的圖案來(lái)。外國(guó)人管它叫“中國(guó)魔板”,在他們看來(lái),沒(méi)有哪一種智力玩具比它更神奇的了。

2、導(dǎo)入:今天就讓我們一起來(lái)認(rèn)識(shí)其中的一個(gè)圖形—平行四邊形。(出示課題)

【設(shè)計(jì)意圖:以學(xué)生喜愛(ài)的“七巧板”為切入點(diǎn),引發(fā)學(xué)生的學(xué)習(xí)熱情?!?/p>

二、嘗試探索 建立模型

(一)認(rèn)一認(rèn) 形成表象

師:老師這兒的圖形就是平行四邊形。改變方向后問(wèn):它還是平行四邊形嗎?

不管平行四邊形的方向怎樣變化,它都是一個(gè)平行四邊形。(圖貼在黑板上)

(二)找一找 感知特征

1、在例題圖中找平行四邊形

師:老師這有幾幅圖,你能在這上面找到平行四邊形嗎?

2、尋找生活中的平行四邊形

師:其實(shí)在我們周圍也有平行四邊形,你在哪些地方見(jiàn)過(guò)平行四邊形?(可相機(jī)出示:活動(dòng)衣架)

(三)做一做 探究特征

1、剛才我們?cè)谏钪姓业搅艘恍┢叫兴倪呅?,現(xiàn)在你能利用手邊的材料做出一個(gè)平行四邊形嗎?

2、在小組里交流你是怎么做的并選代表在班級(jí)里匯報(bào)。

3、剛才同學(xué)們成功的做出了一個(gè)平行四邊形,在做的過(guò)程中,你有什么發(fā)現(xiàn)或收獲嗎?你是怎樣發(fā)現(xiàn)的?(小組交流)

4、全班交流,師小結(jié)平行四邊形的特征。(兩組對(duì)邊分別平行并且相等;對(duì)角相等;內(nèi)角和是360度。)

【設(shè)計(jì)意圖:新課程強(qiáng)調(diào)體驗(yàn)性學(xué)習(xí),學(xué)生學(xué)習(xí)不僅要用腦子去想,而且還要用眼睛看,用耳去聽(tīng),用嘴去說(shuō),用手去做,即用自己的身體去親身經(jīng)歷,用自己的心靈去感悟。這里通過(guò)認(rèn)平行四邊形、找平行四邊形和做平行四邊形,使學(xué)生經(jīng)歷由表象到抽象的過(guò)程。在一系列的活動(dòng)中,讓學(xué)生感悟到了平行四邊形的特征?!?/p>

(四)練一練 鞏固表象

完成想想做做第1、2題

(五)畫(huà)一畫(huà) 認(rèn)識(shí)高、底

1、出示例題,你能量出平行四邊形兩條紅線間的距離嗎?(學(xué)生在自制的圖上畫(huà))說(shuō)說(shuō)你是怎么量的?

2、師:剛才你們畫(huà)的這條垂直線段就是平行四邊形的高。這條對(duì)邊就是平行四邊形的底。

3、平行四邊形的高和底書(shū)上是怎么說(shuō)的呢?(學(xué)生看書(shū))

4、這樣的高能畫(huà)多少條呢?為什么?你能畫(huà)出另一組對(duì)邊上的高,并量一量嗎?(機(jī)動(dòng))

5、教學(xué)“試一試”。(學(xué)生各自量,交流時(shí)強(qiáng)調(diào)底與高的對(duì)應(yīng)關(guān)系)

6、畫(huà)高(想想做做第5題)(提醒學(xué)生畫(huà)上直角標(biāo)記)

三、動(dòng)手操作 鞏固深化

1、完成想想做做第3、4題

第3題:拼一拼、移一移,說(shuō)說(shuō)怎樣移的?

第4題引入:木匠張師傅想把一塊平行四邊形的木板鋸成兩部分,拼成一張長(zhǎng)方形桌面,假如你是張師傅,該怎么鋸呢?想試試嗎?找一張平行四邊形的紙?jiān)囈辉嚒?/p>

2、完成想想做做第6題 (課前做好,課上活動(dòng)。)

(1)師拿出自做的長(zhǎng)方形,捏住對(duì)角相反方向拉一拉,看你發(fā)現(xiàn)了什么?師做生觀察,互相交流。

(2)判斷:長(zhǎng)方形是平行四邊形嗎?小組交流然后再說(shuō)理由,此時(shí)老師可問(wèn)學(xué)生長(zhǎng)方形是什么樣的平行四邊形?(特殊)特殊在哪了?

(3)得出平行四邊形的特性

師再捏住平行四邊形的對(duì)角向里推。看你發(fā)現(xiàn)了什么?

師:三角形具有穩(wěn)定性,通過(guò)剛才的動(dòng)手操作,你覺(jué)得平行四邊形有什么特性呢?(不穩(wěn)定性、容易變形)

(4)特性的應(yīng)用

師:平行四邊形容易變形的特性在生活中有廣泛的應(yīng)用。你能舉些例子嗎?(學(xué)生舉例后閱讀教科書(shū)P45“你知道嗎?”)

【設(shè)計(jì)意圖:】

四、暢談收獲 拓展延伸

1、師:今天這節(jié)課你有什么收獲嗎?

2、用你手中的七巧板拼我們學(xué)過(guò)的圖形。

3、尋找平行四邊形容易變形的特性在生活中的應(yīng)用。

【設(shè)計(jì)意圖:擴(kuò)展課堂教學(xué)的有限空間,課內(nèi)課外密切結(jié)合。課結(jié)束時(shí),布置實(shí)踐作業(yè),要學(xué)生尋找平行四邊形容易變形的特性在生活中的應(yīng)用,使學(xué)生的課堂學(xué)習(xí)和課后生活聯(lián)系起來(lái),使學(xué)生感受到課堂知識(shí)在生活中的應(yīng)用,體驗(yàn)到生活中時(shí)時(shí)處處離不開(kāi)數(shù)學(xué),增強(qiáng)數(shù)學(xué)學(xué)習(xí)的親切感和實(shí)用性。】

初一正數(shù)和負(fù)數(shù)的教案3

教學(xué)目標(biāo):

1、理解運(yùn)用平方差公式分解因式的方法。

2、掌握提公因式法和平方差公式分解因式的綜合運(yùn)用。

3、進(jìn)一步培養(yǎng)學(xué)生綜合、分析數(shù)學(xué)問(wèn)題的能力。

教學(xué)重點(diǎn):

運(yùn)用平方差公式分解因式。

教學(xué)難點(diǎn):

高次指數(shù)的轉(zhuǎn)化,提公因式法,平方差公式的靈活運(yùn)用。

教學(xué)案例:

我們數(shù)學(xué)組的觀課議課主題:

1、關(guān)注學(xué)生的合作交流

2、如何使學(xué)困生能積極參與課堂交流。

在精心備課過(guò)程中,我設(shè)計(jì)了這樣的自學(xué)提示:

1、整式乘法中的平方差公式是___,如何用語(yǔ)言描述?把上述公式反過(guò)來(lái)就得到_____,如何用語(yǔ)言描述?

2、下列多項(xiàng)式能用平方差公式分解因式嗎?若能,請(qǐng)寫(xiě)出分解過(guò)程,若不能,說(shuō)出為什么?

①-x2+y2②-x2-y2③4-9x2

④(x+y)2-(x-y)2⑤a4-b4

3、試總結(jié)運(yùn)用平方差公式因式分解的條件是什么?

4、仿照例4的分析及旁白你能把x3y-xy因式分解嗎?

5、試總結(jié)因式分解的步驟是什么?

師巡回指導(dǎo),生自主探究后交流合作。

生交流熱情很高,但把全部問(wèn)題分析完已用了30分鐘。

生展示自學(xué)成果。

生1:-x2+y2能用平方差公式分解,可分解為(y+x)(y-x)

生2:-x2+y2=-(x2-y2)=-(x+y)(x-y)

師:這兩種方法都可以,但第二種方法提出負(fù)號(hào)后,一定要注意括號(hào)里的各項(xiàng)要變號(hào)。

生3:4-9x2也能用平方差公式分解,可分解為(2+9x)(2-9x)

生4:不對(duì),應(yīng)分解為(2+3x)(2-3x),要運(yùn)用平方差公式必須化為兩個(gè)數(shù)或整式的平方差的形式。

生5:a4-b4可分解為(a2+b2)(a2-b2)

生6:不對(duì),a2-b2還能繼續(xù)分解為a+b)(a-b)

師:大家爭(zhēng)論的很好,運(yùn)用平方差公式分解因式,必須化為兩個(gè)數(shù)或兩個(gè)整式的平方的差的形式,另因式分解必須分解到不能再分解為止。……

反思:這節(jié)課我備課比較認(rèn)真,自學(xué)提示的設(shè)計(jì)也動(dòng)了一番腦筋,為讓學(xué)生順利得出運(yùn)用平方差公式因式分解的'條件,我設(shè)計(jì)了問(wèn)題2,為讓學(xué)生能更容易總結(jié)因式分解的步驟,我又設(shè)計(jì)了問(wèn)題4,自認(rèn)為,本節(jié)課一定會(huì)上的非常成功,學(xué)生的交流、合作,自學(xué)展示一定會(huì)很精彩,結(jié)果卻出乎我的意料,本節(jié)課沒(méi)有按計(jì)劃完成教學(xué)任務(wù),學(xué)生練習(xí)很少,作業(yè)有很大一部分同學(xué)不能獨(dú)立完成,反思這節(jié)課主要有以下幾個(gè)問(wèn)題:

(1)我在備課時(shí),過(guò)高估計(jì)了學(xué)生的能力,問(wèn)題2中的③、④、⑤多數(shù)學(xué)生剛預(yù)習(xí)后不能熟練解答,導(dǎo)致在小組交流時(shí),多數(shù)學(xué)生都在交流這幾題該怎樣分解,耽誤了寶貴的時(shí)間,也分散了學(xué)生的注意力,導(dǎo)致難點(diǎn)、重點(diǎn)不突出,若能把問(wèn)題2改為:

下列多項(xiàng)式能用平方差公式因式分解嗎?為什么?可能效果會(huì)更好。

(2)教師備課時(shí),要考慮學(xué)生的知識(shí)層次,能力水平,真正把學(xué)生放在第一位,要考慮學(xué)生的接受能力,安排習(xí)題要循序漸進(jìn),切莫過(guò)于心急,過(guò)分追求課堂容量、習(xí)題類型全等等,例如在問(wèn)題2的設(shè)計(jì)時(shí)可寫(xiě)一些簡(jiǎn)單的,像④、⑤可到練習(xí)時(shí)再出現(xiàn),發(fā)現(xiàn)問(wèn)題后再?gòu)?qiáng)調(diào)、歸納,效果也可能會(huì)更好。

我及時(shí)調(diào)整了自學(xué)提示的內(nèi)容,在另一個(gè)班也上了這節(jié)課。果然,學(xué)生的討論有了重點(diǎn),很快(大約10分鐘)便合作得出了結(jié)論,課堂氣氛非?;钴S,練習(xí)量大,準(zhǔn)確率高,但隨之我又發(fā)現(xiàn)我在處理課后練習(xí)時(shí)有點(diǎn)不能應(yīng)對(duì)自如。例如:師:下面我們把課后練習(xí)做一下,話音剛落,大家紛紛拿著本到我面前批改。師:都完了?生:全完了。我很興奮。來(lái):“我們?cè)僮鰩最}試試。”生又開(kāi)始緊張地練習(xí)……下課后,無(wú)意間發(fā)現(xiàn)竟還有好幾個(gè)同學(xué)課后題沒(méi)做。原因是預(yù)習(xí)時(shí)不會(huì),上課又沒(méi)時(shí)間,還有幾位同學(xué)練習(xí)題竟然有誤,也沒(méi)改正,原因是上課慌著展示自己,沒(méi)顧上改……。看來(lái),以后上課不能單聽(tīng)學(xué)生的齊答,要發(fā)揮組長(zhǎng)的職責(zé),注重過(guò)關(guān)落實(shí)。給學(xué)生一點(diǎn)機(jī)動(dòng)時(shí)間,讓學(xué)習(xí)有困難的學(xué)生有機(jī)會(huì)釋疑,練習(xí)不在于多,要注意融會(huì)貫通,會(huì)舉一反三。

初一正數(shù)和負(fù)數(shù)的教案4

教學(xué)目標(biāo)

1、理解用配方法解一元二次方程的基本步驟。

2、會(huì)用配方法解二次項(xiàng)系數(shù)為1的一元二次方程。

3、進(jìn)一步體會(huì)化歸的思想方法。

重點(diǎn)難點(diǎn)

重點(diǎn):會(huì)用配方法解一元二次方程.

難點(diǎn):使一元二次方程中含未知數(shù)的項(xiàng)在一個(gè)完全平方式里。

教學(xué)過(guò)程

(一)復(fù)習(xí)引入

1、用配方法解方程x2+x-1=0,學(xué)生練習(xí)后再完成課本P.13的“做一做”.

2、用配方法解二次項(xiàng)系數(shù)為1的一元二次方程的基本步驟是什么?

(二)創(chuàng)設(shè)情境

現(xiàn)在我們已經(jīng)會(huì)用配方法解二次項(xiàng)系數(shù)為1的一元二次方程,而對(duì)于二次項(xiàng)系數(shù)不為1的一元二次方程能不能用配方法解?

怎樣解這類方程:2x2-4x-6=0

(三)探究新知

讓學(xué)生議一議解方程2x2-4x-6=0的方法,然后總結(jié)得出:對(duì)于二次項(xiàng)系數(shù)不為1的一元二次方程,可將方程兩邊同除以二次項(xiàng)的系數(shù),把二次項(xiàng)系數(shù)化為1,然后按上一節(jié)課所學(xué)的方法來(lái)解。讓學(xué)生進(jìn)一步體會(huì)化歸的思想。

(四)講解例題

1、展示課本P.14例8,按課本方式講解。

2、引導(dǎo)學(xué)生完成課本P.14例9的填空。

3、歸納用配方法解一元二次方程的基本步驟:首先將方程化為二次項(xiàng)系數(shù)是1的一般形式;其次加上一次項(xiàng)系數(shù)的一半的平方,再減去這個(gè)數(shù),使得含未知數(shù)的項(xiàng)在一個(gè)完全平方式里;最后將配方后的一元二次方程用因式分解法或直接開(kāi)平方法來(lái)解。

(五)應(yīng)用新知

課本P.15,練習(xí)。

(六)課堂小結(jié)

1、用配方法解一元二次方程的基本步驟是什么?

2、配方法是一種重要的數(shù)學(xué)方法,它的重要性不僅僅表現(xiàn)在一元二次方程的解法中,在今后學(xué)習(xí)二次函數(shù),高中學(xué)習(xí)二次曲線時(shí)都要經(jīng)常用到。

3、配方法是解一元二次方程的通法,但是由于配方的過(guò)程要進(jìn)行較繁瑣的運(yùn)算,在解一元二次方程時(shí),實(shí)際運(yùn)用較少。

4、按圖1—l的框圖小結(jié)前面所學(xué)解

一元二次方程的算法。

(七)思考與拓展

不解方程,只通過(guò)配方判定下列方程解的

情況。

(1)4x2+4x+1=0;(2)x2-2x-5=0;

(3)–x2+2x-5=0;

[解]把各方程分別配方得

(1)(x+)2=0;

(2)(x-1)2=6;

(3)(x-1)2=-4

由此可得方程(1)有兩個(gè)相等的實(shí)數(shù)根,方程(2)有兩個(gè)不相等的實(shí)數(shù)根,方程(3)沒(méi)有實(shí)數(shù)根。

點(diǎn)評(píng):通過(guò)解答這三個(gè)問(wèn)題,使學(xué)生能靈活運(yùn)用“配方法”,并強(qiáng)化學(xué)生對(duì)一元二次方程解的三種情況的認(rèn)識(shí)。

初一正數(shù)和負(fù)數(shù)的教案5

一、學(xué)習(xí)目標(biāo):1.添括號(hào)法則.

2.利用添括號(hào)法則靈活應(yīng)用完全平方公式

二、重點(diǎn)難點(diǎn)

重 點(diǎn): 理解添括號(hào)法則,進(jìn)一步熟悉乘法公式的合理利用

難 點(diǎn): 在多項(xiàng)式與多項(xiàng)式的乘法中適當(dāng)添括號(hào)達(dá)到應(yīng)用公式的目的.

三、合作學(xué)習(xí)

Ⅰ.提出問(wèn)題,創(chuàng)設(shè)情境

請(qǐng)同學(xué)們完成下列運(yùn)算并回憶去括號(hào)法則.

(1)4+(5+2) (2)4-(5+2) (3)a+(b+c) (4)a-(b-c)

去括號(hào)法則:

去括號(hào)時(shí),如果括號(hào)前是正號(hào),去掉括號(hào)后,括號(hào)里的每一項(xiàng)都不變號(hào);

如果括號(hào)前是負(fù)號(hào),去掉括號(hào)后,括號(hào)里的各項(xiàng)都要變號(hào)。

1.在等號(hào)右邊的括號(hào)內(nèi)填上適當(dāng)?shù)捻?xiàng):

(1)a+b-c=a+( ) (2)a-b+c=a-( )

(3)a-b-c=a-( ) (4)a+b+c=a-( )

2.判斷下列運(yùn)算是否正確.

(1)2a-b- =2a-(b- ) (2)m-3n+2a-b=m+(3n+2a-b)

(3)2x-3y+2=-(2x+3y-2) (4)a-2b-4c+5=(a-2b)-(4c+5)

添括號(hào)法則:添上一個(gè)正括號(hào),擴(kuò)到括號(hào)里的不變號(hào),添上一個(gè)負(fù)括號(hào),擴(kuò)到括號(hào)里的要變號(hào)。

五、精講精練

例:運(yùn)用乘法公式計(jì)算

(1)(x+2y-3)(x-2y+3) (2)(a+b+c)2

(3)(x+3)2-x2 (4)(x+5)2-(x-2)(x-3)

隨堂練習(xí):教科書(shū)練習(xí)

五、小結(jié):去括號(hào)法則

六、作業(yè):教科書(shū)習(xí)題


精選圖文

221381
Z范文網(wǎng)、范文協(xié)會(huì)網(wǎng)范文檔案館、