平面向量是在二維平面內(nèi)既有方向又有大小的量,物理學(xué)中也稱作矢量,與之相對(duì)的是只有大小、沒(méi)有方向的數(shù)量。下面是小編整理的數(shù)學(xué)必修四第二章平面向量知識(shí)點(diǎn),僅供參考希望能夠幫助到大家。
數(shù)學(xué)必修四第二章平面向量知識(shí)點(diǎn)
1.平面向量基本概念
有向線段:具有方向的線段叫做有向線段,以A為起點(diǎn),B為終點(diǎn)的有向線段記作 或AB;
向量的模:有向線段AB的長(zhǎng)度叫做向量的模,記作|AB|;
零向量:長(zhǎng)度等于0的向量叫做零向量,記作 或0。(注意粗體格式,實(shí)數(shù)“0”和向量“0”是有區(qū)別的,書(shū)寫(xiě)時(shí)要在實(shí)數(shù)“0”上加箭頭,以免混淆);
相等向量:長(zhǎng)度相等且方向相同的向量叫做相等向量;
平行向量(共線向量):兩個(gè)方向相同或相反的非零向量叫做平行向量或共線向量,零向量與任意向量平行,即0//a;
單位向量:模等于1個(gè)單位長(zhǎng)度的向量叫做單位向量,通常用e表示,平行于坐標(biāo)軸的單位向量習(xí)慣上分別用i、j表示。
相反向量:與a長(zhǎng)度相等,方向相反的向量,叫做a的相反向量,-(-a)=a,零向量的相反向量仍然是零向量。
2.平面向量運(yùn)算
加法與減法的代數(shù)運(yùn)算:
(1)若a=(x1,y1 ),b=(x2,y2 )則a b=(x1+x2,y1+y2 ).
向量加法與減法的幾何表示:平行四邊形法則、三角形法則。
向量加法有如下規(guī)律: + = + (交換律); +( +c)=( + )+c (結(jié)合律);
實(shí)數(shù)與向量的積:實(shí)數(shù) 與向量 的積是一個(gè)向量。
(1)| |=| |·| |;
(2) 當(dāng) a>0時(shí), 與a的方向相同;當(dāng)a<0時(shí), 與a的方向相反;當(dāng) a=0時(shí),a=0.
兩個(gè)向量共線的充要條件:
(1) 向量b與非零向量 共線的充要條件是有且僅有一個(gè)實(shí)數(shù) ,使得b= .
(2) 若 =( ),b=( )則 ‖b .
3.平面向量基本定理
若e1、e2是同一平面內(nèi)的兩個(gè)不共線向量,那么對(duì)于這一平面內(nèi)的任一向量 ,有且只有一對(duì)實(shí)數(shù) , ,使得 = e1+ e2.
4.平面向量有關(guān)推論
三角形ABC內(nèi)一點(diǎn)O,OA·OB=OB·OC=OC·OA,則點(diǎn)O是三角形的垂心。
若O是三角形ABC的外心,點(diǎn)M滿足OA+OB+OC=OM,則M是三角形ABC的垂心。
若O和三角形ABC共面,且滿足OA+OB+OC=0,則O是三角形ABC的重心。
三點(diǎn)共線:三點(diǎn)A,B,C共線推出OA=μO(píng)B+aOC(μ+a=1)
數(shù)學(xué)導(dǎo)數(shù)知識(shí)點(diǎn)
1.導(dǎo)數(shù)的意義:曲線在該點(diǎn)處的切線的斜率(幾何意義)、瞬時(shí)速度、邊際成本(成本為因變量、產(chǎn)量為自變量的函數(shù)的導(dǎo)數(shù),C為常數(shù))
2.多項(xiàng)式函數(shù)的導(dǎo)數(shù)與函數(shù)的單調(diào)性
在一個(gè)區(qū)間上(個(gè)別點(diǎn)取等號(hào))在此區(qū)間上為增函數(shù).
在一個(gè)區(qū)間上(個(gè)別點(diǎn)取等號(hào))在此區(qū)間上為減函數(shù).
3.導(dǎo)數(shù)與極值、導(dǎo)數(shù)與最值:
(1)函數(shù)處有且“左正右負(fù)”在處取極大值;
函數(shù)在處有且左負(fù)右正”在處取極小值.
注意:①在處有是函數(shù)在處取極值的必要非充分條件.
②求函數(shù)極值的方法:先找定義域,再求導(dǎo),找出定義域的分界點(diǎn),列表求出極值.特別是給出函數(shù)極大(小)值的條件,一定要既考慮,又要考慮驗(yàn)“左正右負(fù)”(“左負(fù)右正”)的轉(zhuǎn)化,否則條件沒(méi)有用完,這一點(diǎn)一定要切記.
③單調(diào)性與最值(極值)的研究要注意列表!
(2)函數(shù)在一閉區(qū)間上的最大值是此函數(shù)在此區(qū)間上的極大值與其端點(diǎn)值中的“最大值”
函數(shù) 在一閉區(qū)間上的最小值是此函數(shù)在此區(qū)間上的極小值與其端點(diǎn)值中的“最小值”;
注意:利用導(dǎo)數(shù)求最值的步驟:先找定義域 再求出導(dǎo)數(shù)為0及導(dǎo)數(shù)不存在的的點(diǎn),然后比較定義域的端點(diǎn)值和導(dǎo)數(shù)為0的點(diǎn)對(duì)應(yīng)函數(shù)值的大小,其中最大的就是最大值,最小就為最小。
數(shù)學(xué)有理數(shù)知識(shí)點(diǎn)
(一)定義
有理數(shù)為整數(shù)(正整數(shù)、0、負(fù)整數(shù))和分?jǐn)?shù)的統(tǒng)稱,正整數(shù)和正分?jǐn)?shù)合稱為正有理數(shù),負(fù)整數(shù)和負(fù)分?jǐn)?shù)合稱為負(fù)有理數(shù)。因而有理數(shù)集的數(shù)可分為正有理數(shù)、負(fù)有理數(shù)和零。
(二)有理數(shù)的性質(zhì)
(1)順序性
(2)封閉性
(3)稠密性
(三)有理數(shù)的加法運(yùn)算法則
1.同號(hào)兩數(shù)相加,取與加數(shù)相同的符號(hào),并把絕對(duì)值相加。
2.異號(hào)兩數(shù)相加,若絕對(duì)值相等則互為相反數(shù)的兩數(shù)和為0;若絕對(duì)值不相等,取絕對(duì)值較大的加數(shù)的符號(hào),并用較大的絕對(duì)值減去較小的絕對(duì)值。
3.互為相反數(shù)的兩數(shù)相加得0。
4.一個(gè)數(shù)同0相加仍得這個(gè)數(shù)。
5.互為相反數(shù)的兩個(gè)數(shù),可以先相加。
6.符號(hào)相同的數(shù)可以先相加。
7.分母相同的數(shù)可以先相加。
8.幾個(gè)數(shù)相加能得整數(shù)的可以先相加。
9.減去一個(gè)數(shù),等于加上這個(gè)數(shù)的相反數(shù),即把有理數(shù)的減法利用數(shù)的相反數(shù)變成加法進(jìn)行運(yùn)算。