中文字幕人妻色偷偷久久_天天鲁一鲁摸一摸爽一爽_最新亚洲人成网站在线观看_999久久久免费精品国产_久久精品丝袜高跟鞋

歡迎訪一網(wǎng)寶!您身邊的知識小幫手,專注做最新的學(xué)習(xí)參考資料!

20021年初中數(shù)學(xué)知識點(diǎn)

一網(wǎng)寶 分享 時間: 加入收藏 我要投稿 點(diǎn)贊

水滴石穿,繩鋸木斷。圓的考點(diǎn),通過復(fù)習(xí),能夠鞏固所學(xué)知識并靈活運(yùn)用,考試時會更得心應(yīng)手。下面小編就和大家分享初中數(shù)學(xué)知識點(diǎn)歸納,來欣賞一下吧。

初中數(shù)學(xué)知識點(diǎn)歸納1

第一章證明(二)

1.通過猜想,驗(yàn)證,計算得到的定理:

(1)全等三角形的判定定理:

(2)與等腰三角形的相關(guān)結(jié)論:

①等腰三角形兩底角相等(等邊對等角)

②等腰三角形頂角的平分線,底邊上的中線,底邊上的高互相重合(三線合一)

③有兩個角相等的三角形是等腰三角形(等角對等邊)

(3)與等邊三角形相關(guān)的結(jié)論:

①有一個角是60°得等腰三角形是等邊三角形

②三個角都相等的三角形是等邊三角形

③三條邊都相等的三角形是等邊三角形

(4)與直角三角形相關(guān)的結(jié)論:

①勾股定理:在直角三角形中,兩直角邊的平方和等于斜邊的平方

②勾股定理逆定理:在一個三角形中兩直角邊的平方和等于斜邊的平方,那么這個三角形一定是直角三角形

③HL定理:斜邊和一條直角邊對應(yīng)相等的兩個三角形全等

④在三角形中30°角所對的直角邊等于斜邊的一半

2.兩條特殊線

(1)線段的垂直平分線

①線段的垂直平分線上的點(diǎn)到線段兩邊的距離相等

互為逆定理{

②到一條線段兩個端點(diǎn)距離相等的點(diǎn)在這條線段的垂直平分線上

③三角形的三條垂直平分線交于一點(diǎn),并且這一點(diǎn)到這三個頂點(diǎn)的距離相等

(2)角平分線

①角平分線上的點(diǎn)到這個角的兩邊距離相等

互為逆定理{

②在一個角的內(nèi)部,并且到這個角的兩邊距離相等的的點(diǎn),在這個角的角平分線上

3.命題的逆命題及真假

①在兩個命題中,如果一個命題的條件與結(jié)論是另一個命題的結(jié)論與條件,我們就說這兩個命題互為逆命題,其中一個是另一個的逆命題

②如果一個定理的逆命題是真命題,那么他也是一個定理,我們稱這兩個定理為互逆定理

③反正法:從否定命題的結(jié)論入手,并把對命題結(jié)論的否定作為推理的已知條件,進(jìn)行正確的邏輯推理,使之得到與已知條件,定理相矛盾,矛盾的原因是假設(shè)不成立,所以肯定了命題的結(jié)論,使命題獲得了證明

第二章一元二次方程

1.一元二次方程:只含有一個未知數(shù)X的整式方程,并且可以化成aX2+bX+C=0(a≠0)形式稱它為一元二次方程

aX2+bX+C=0(a≠0)→一般形式

aX2叫二次項(xiàng)bX叫一次項(xiàng)C叫常數(shù)項(xiàng)a叫二次項(xiàng)系數(shù)b叫一次項(xiàng)系數(shù)

2.一元二次方程解法:

(1)配方法:(X±a)2=b(b≥0)注:二次項(xiàng)系數(shù)必須化為1

(2)公式法:aX2+bX+C=0(a≠0)確定a,b,c的值,計算b2-4ac≥0

若b2-4ac>0則有兩個不相等的實(shí)根,若b2-4ac=0則有兩個相等的實(shí)根,若b2-4ac<0則無解

若b2-4ac≥0則用公式X=-b±√b2-4ac/2a注:必須化為一般形式

(3)分解因式法

①提公因式法:ma+mb=0→m(a+b)=0

平方差公式:a2-b2=0→(a+b)(a-b)=0

②運(yùn)用公式法:{

完全平方公式:a2±2ab+b2=0→(a±b)2=0

③十字相乘法

例題:X2-2X-3=0

1/111

×}X2的系數(shù)為1則可以寫成{常數(shù)項(xiàng)系數(shù)為3則可寫成{

1/-31-3

--------

-3+1=-2交叉相乘在相加求值,值必須等于一次項(xiàng)系數(shù)

(X+1)(X-3)=o

第三章證明(三)

1.平行四邊形

定義:兩組對邊分別平行的四邊形是平行四邊形

性質(zhì)定理:

(1)兩組對邊分別相等

(2)平行四邊形對角相等

(3)對角線互相平分

判定定理:

(1)兩組對邊分別相等的四邊形是平行四邊形

(2)兩組對角分別相等的四邊形是平行四邊形

(3)對角線互相平分的四邊形是平行四邊形

(4)一組對邊平行且相等的四邊形是平行四邊形

2.等腰梯形

定義:兩腰相等的梯形叫等腰梯形

性質(zhì)定理:

(1)同一底上的兩個角相等

(2)等腰梯形的對角線相等

判定定理:

(1)同一底上的兩個角相等的梯形是等腰梯形

(2)兩條對角線相等的梯形是等腰梯形

定理:夾在兩條平行線中間的平行線段相等

3.三角形和梯形的中位線:

(1)三角形的中位線

定義:三角形中任意兩邊中點(diǎn)的連線,叫三角形的中位線(三角形有三條中位線)

性質(zhì)定理:三角形的中位線平行且等于第三邊的一半

(2)梯形的中位線

定義:梯形兩腰中點(diǎn)的連線,叫梯形的中位線,梯形的中位線平行于上底下底

性質(zhì)定理:梯形的中位線等于上,下底之和的一半

4.矩形→特殊的平行四邊形

定理:一個角是直角的平行四邊形是矩形

性質(zhì)定理:

(1)矩形的四個角都是直角

(2)矩形的對角線相等

判定定理:

(1)三個角都是直角的四邊形是矩形

(2)對角線相等的平行四邊形是矩形

推論:直角三角形的斜邊上的中線等于斜邊的一半

逆定理:如果一個三角形中,一條邊上的中線等于這條邊的一半,那么這個三角形是直角三角形

5.菱形→特殊的平行四邊形

定義:一組鄰邊相等的的平行四邊形是菱形

性質(zhì)定理:

(1)菱形的四條邊都相等

(2)菱形的對角線互相垂直,并且每一條線平分一組對角

判定定理:

(1)四條邊都相等的四邊形是菱形

(2)對角線互相垂直的平行四邊形是菱形

面積計算:菱形的面積等于其對角線乘積的一半

6正方形→特殊的平行四邊形

定義:每一個角都是直角,并且鄰邊相等

性質(zhì)定理:

(1)正方形的四條邊都相等,四個角都是直角

(2)對角線互相垂直,平分,相等,并且每一條對角線平分一組對角

判定定理:

(1)有一個角是直角的菱形是正方形

(2)一組鄰邊相等的矩形是正方形

(3)對角線相等的菱形是正方形

(4)對角線互相垂直的矩形是正方形

7.連接四邊形各個中點(diǎn)得到

(1)依次連接任意四邊形各邊中點(diǎn)能得到平行四邊形

(2)依次連接平行四邊形各邊中點(diǎn)能得到平行四邊形

(3)依次連接菱形各邊中點(diǎn)能得到矩形

(4)依次連接矩形各邊中點(diǎn)能得到菱形

(5)依次連接正方形各邊中點(diǎn)能得到正方形

第四章視圖與投影

1.三視圖

主視圖左視圖

俯視圖

(1)主視圖與左視圖要高平齊

(2)主視圖與俯視圖要長對正

(3)俯視圖與左視圖要寬相等

2.投影

①平行投影

②中心投影

視點(diǎn),視線,盲區(qū)

第五章反比例函數(shù)

k

1.定義:y=-(k≠0)

x

xy=k(k≠0)

y=kx-1(y≠0)

k

2.性質(zhì):y=-(k≠0)

x

①k>0時,圖像在一,三象限,并且在每個象限內(nèi)y隨x增大而減小

②k<0時,圖像在二,四象限,并且在每個象限內(nèi)y隨x增大而增大

3.會與一次函數(shù)相結(jié)合

一次函數(shù):y=kx+b(k≠0)

性質(zhì)①k>0時,y隨x的增大而增大

②k<0時,y隨x的增大而減小

b:在y軸上的截距

第六章頻率與概率

1.理論概率

(1)只涉及一步試驗(yàn)概率

多次試驗(yàn)得到的試驗(yàn)頻率就等于理論概率

(2)涉及兩步試驗(yàn)

①樹狀圖

②列表法

(3)試驗(yàn)做估

初中數(shù)學(xué)知識點(diǎn)歸納2

二次根式

1.二次根式:一般地,式子 叫做二次根式.

注意:(1)若 這個條件不成立,則 不是二次根式;

(2) 是一個重要的非負(fù)數(shù),即; ≥0.

2.重要公式:(1) ,(2) ;

3.積的算術(shù)平方根:

積的算術(shù)平方根等于積中各因式的算術(shù)平方根的積;

4.二次根式的乘法法則: .

5.二次根式比較大小的方法:

(1)利用近似值比大小;

(2)把二次根式的系數(shù)移入二次根號內(nèi),然后比大小;

(3)分別平方,然后比大小.

6.商的算術(shù)平方根: ,

商的算術(shù)平方根等于被除式的算術(shù)平方根除以除式的算術(shù)平方根.

7.二次根式的除法法則:

(1) ;(2) ;

(3)分母有理化的方法是:分式的分子與分母同乘分母的有理化因式,使分母變?yōu)檎?

8.最簡二次根式:

(1)滿足下列兩個條件的二次根式,叫做最簡二次根式,① 被開方數(shù)的因數(shù)是整數(shù),因式是整式,② 被開方數(shù)中不含能開的盡的因數(shù)或因式;

(2)最簡二次根式中,被開方數(shù)不能含有小數(shù)、分?jǐn)?shù),字母因式次數(shù)低于2,且不含分母;

(3)化簡二次根式時,往往需要把被開方數(shù)先分解因數(shù)或分解因式;

(4)二次根式計算的最后結(jié)果必須化為最簡二次根式.

10.同類二次根式:幾個二次根式化成最簡二次根式后,如果被開方數(shù)相同,這幾個二次根式叫做同類二次根式.

12.二次根式的混合運(yùn)算:

(1)二次根式的混合運(yùn)算包括加、減、乘、除、乘方、開方六種代數(shù)運(yùn)算,以前學(xué)過的,在有理數(shù)范圍內(nèi)的一切公式和運(yùn)算律在二次根式的混合運(yùn)算中都適用;

(2)二次根式的運(yùn)算一般要先把二次根式進(jìn)行適當(dāng)化簡,例如:化為同類二次根式才能合并;除法運(yùn)算有時轉(zhuǎn)化為分母有理化或約分更為簡便;使用乘法公式等.

第22章 一元二次方程

1. 一元二次方程的一般形式: a≠0時,ax2+bx+c=0叫一元二次方程的一般形式,研究一元二次方程的有關(guān)問題時,多數(shù)習(xí)題要先化為一般形式,目的是確定一般形式中的a、 b、 c; 其中a 、 b,、c可能是具體數(shù),也可能是含待定字母或特定式子的代數(shù)式.

2. 一元二次方程的解法:一元二次方程的四種解法要求靈活運(yùn)用, 其中直接開平方法雖然簡單,但是適用范圍較小;公式法雖然適用范圍大,但計算較繁,易發(fā)生計算錯誤;因式分解法適用范圍較大,且計算簡便,是首選方法;配方法使用較少.

3. 一元二次方程根的判別式: 當(dāng)ax2+bx+c=0 (a≠0)時,Δ=b2-4ac 叫一元二次方程根的判別式.請注意以下等價命題:

Δ>0 <=> 有兩個不等的實(shí)根; Δ=0 <=> 有兩個相等的實(shí)根;Δ<0 <=> 無實(shí)根;

4.平均增長率問題--------應(yīng)用題的類型題之一 (設(shè)增長率為x):

(1) 第一年為 a , 第二年為a(1+x) , 第三年為a(1+x)2.

(2)常利用以下相等關(guān)系列方程: 第三年=第三年 或 第一年+第二年+第三年=總和.

第23章旋轉(zhuǎn)

1、概念:

把一個圖形繞著某一點(diǎn)O轉(zhuǎn)動一個角度的圖形變換叫做旋轉(zhuǎn),點(diǎn)O叫做旋轉(zhuǎn)中心,轉(zhuǎn)動的角叫做旋轉(zhuǎn)角.

旋轉(zhuǎn)三要素:旋轉(zhuǎn)中心、旋轉(zhuǎn)方面、旋轉(zhuǎn)角

2、旋轉(zhuǎn)的性質(zhì):

(1) 旋轉(zhuǎn)前后的兩個圖形是全等形;

(2) 兩個對應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等

(3) 兩個對應(yīng)點(diǎn)與旋轉(zhuǎn)中心的連線段的夾角等于旋轉(zhuǎn)角

3、中心對稱:

把一個圖形繞著某一個點(diǎn)旋轉(zhuǎn)180°,如果它能夠與另一個圖形重合,那么就說這兩個圖形關(guān)于這個點(diǎn)對稱或中心對稱,這個點(diǎn)叫做對稱中心.

這兩個圖形中的對應(yīng)點(diǎn)叫做關(guān)于中心的對稱點(diǎn).

4、中心對稱的性質(zhì):

(1)關(guān)于中心對稱的兩個圖形,對稱點(diǎn)所連線段都經(jīng)過對稱中心,而且被對稱中心所平分.

(2)關(guān)于中心對稱的兩個圖形是全等圖形.

5、中心對稱圖形:

把一個圖形繞著某一個點(diǎn)旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個圖形叫做中心對稱圖形,這個點(diǎn)就是它的對稱中心.

6、坐標(biāo)系中的中心對稱

兩個點(diǎn)關(guān)于原點(diǎn)對稱時,它們的坐標(biāo)符號相反,

即點(diǎn)P(x,y)關(guān)于原點(diǎn)O的對稱點(diǎn)P′(-x,-y).

第24章 圓

1、(要求深刻理解、熟練運(yùn)用)

1.垂徑定理及推論:

如圖:有五個元素,“知二可推三”;需記憶其中四個定理,

即“垂徑定理”“中徑定理” “弧徑定理”“中垂定理”.

幾何表達(dá)式舉例:

∵ CD過圓心

∵CD⊥AB

3.“角、弦、弧、距”定理:(同圓或等圓中)

“等角對等弦”; “等弦對等角”;

“等角對等弧”; “等弧對等角”;

“等弧對等弦”;“等弦對等(優(yōu),劣)弧”;

“等弦對等弦心距”;“等弦心距對等弦”.

幾何表達(dá)式舉例:

(1) ∵∠AOB=∠COD

∴ AB = CD

(2) ∵ AB = CD

∴∠AOB=∠COD

(3)……………

4.圓周角定理及推論:

(1)圓周角的度數(shù)等于它所對的弧的度數(shù)的一半;

(2)一條弧所對的圓周角等于它所對的圓心角的一半;(如圖)

(3)“等弧對等角”“等角對等弧”;

(4)“直徑對直角”“直角對直徑”;(如圖)

(5)如三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形.(如圖)

(1) (2)(3) (4)

幾何表達(dá)式舉例:

(1) ∵∠ACB= ∠AOB

∴ ……………

(2) ∵ AB是直徑

∴ ∠ACB=90°

(3) ∵ ∠ACB=90°

∴ AB是直徑

(4) ∵ CD=AD=BD

∴ ΔABC是RtΔ

5.圓內(nèi)接四邊形性質(zhì)定理:

圓內(nèi)接四邊形的對角互補(bǔ),

并且任何一個外角都等于它的內(nèi)對角.

幾何表達(dá)式舉例:

∵ ABCD是圓內(nèi)接四邊形

∴ ∠CDE =∠ABC

∠C+∠A =180°

6.切線的判定與性質(zhì)定理:

如圖:有三個元素,“知二可推一”;

需記憶其中四個定理.

(1)經(jīng)過半徑的外端并且垂直于這條

半徑的直線是圓的切線;

(2)圓的切線垂直于經(jīng)過切點(diǎn)的半徑;

幾何表達(dá)式舉例:

(1) ∵OC是半徑

∵OC⊥AB

∴AB是切線

(2) ∵OC是半徑

∵AB是切線

∴OC⊥AB

9.相交弦定理及其推論:

(1)圓內(nèi)的兩條相交弦,被交點(diǎn)分成的兩條線段長的乘積相等;

(2)如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段長的比例中項(xiàng).

(1) (2)

幾何表達(dá)式舉例:

(1) ∵PA?PB=PC?PD

∴………

(2) ∵AB是直徑

∵PC⊥AB

∴PC2=PA?PB

11.關(guān)于兩圓的性質(zhì)定理:

(1)相交兩圓的連心線垂直平分兩圓的公共弦;

(2)如果兩圓相切,那么切點(diǎn)一定在連心線上.

(1) (2)

幾何表達(dá)式舉例:

(1) ∵O1,O2是圓心

∴O1O2垂直平分AB

(2) ∵⊙1 、⊙2相切

∴O1 、A、O2三點(diǎn)一線

12.正多邊形的有關(guān)計算:

(1)中心角an ,半徑RN ,邊心距rn ,

邊長an ,內(nèi)角bn ,邊數(shù)n;

(2)有關(guān)計算在RtΔAOC中進(jìn)行.

公式舉例:

(1) an = ;

(2)

二 定理:

1.不在一直線上的三個點(diǎn)確定一個圓.

2.任何正多邊形都有一個外接圓和一個內(nèi)切圓,這兩個圓是同心圓.

3.正n邊形的半徑和邊心距把正n邊形分為2n個全等的直角三角形.

三 公式:

1.有關(guān)的計算:

(1)圓的周長C=2πR;(2)弧長L= ;(3)圓的面積S=πR2.

(4)扇形面積S扇形 = ;

(5)弓形面積S弓形 =扇形面積SAOB±ΔAOB的面積.(如圖)

2.圓柱與圓錐的側(cè)面展開圖:

(1)圓柱的側(cè)面積:S圓柱側(cè) =2πrh; (r:底面半徑;h:圓柱高)

(2)圓錐的側(cè)面積:S圓錐側(cè) = =πrR. (L=2πr,R是圓錐母線長;r是底面半徑)

四 常識:

1. 圓是軸對稱和中心對稱圖形.

2. 圓心角的度數(shù)等于它所對弧的度數(shù).

3. 三角形的外心 ? 兩邊中垂線的交點(diǎn) ? 三角形的外接圓的圓心;

三角形的內(nèi)心 ? 兩內(nèi)角平分線的交點(diǎn) ? 三角形的內(nèi)切圓的圓心.

4. 直線與圓的位置關(guān)系:(其中d表示圓心到直線的距離;其中r表示圓的半徑)

直線與圓相交 ? dr.

5. 圓與圓的位置關(guān)系:(其中d表示圓心到圓心的距離,其中R、r表示兩個圓的半徑且R≥r)

兩圓外離 ? d>R+r; 兩圓外切 ? d=R+r; 兩圓相交 ? R-r

兩圓內(nèi)切 ? d=R-r; 兩圓內(nèi)含 ? d

6.證直線與圓相切,常利用:“已知交點(diǎn)連半徑證垂直”和“不知交點(diǎn)作垂直證半徑” 的方法加輔助線.

第25章 概率

1、 必然事件、不可能事件、隨機(jī)事件的區(qū)別

2、概率

一般地,在大量重復(fù)試驗(yàn)中,如果事件A發(fā)生的頻率 會穩(wěn)定在某個常數(shù)p附近,那么這個常數(shù)p就叫做事件A的概率(probability), 記作P(A)= p.

注意:(1)概率是隨機(jī)事件發(fā)生的可能性的大小的數(shù)量反映.

(2)概率是事件在大量重復(fù)試驗(yàn)中頻率逐漸穩(wěn)定到的值,即可以用大量重復(fù)試驗(yàn)中事件發(fā)生的頻率去估計得到事件發(fā)生的概率,但二者不能簡單地等同.

3、求概率的方法

(1)用列舉法求概率(列表法、畫樹形圖法)

(2)用頻率估計概率:一大面,可用大量重復(fù)試驗(yàn)中事件發(fā)生頻率來估計事件發(fā)生的概率.另一方面,大量重復(fù)試驗(yàn)中事件發(fā)生的頻率穩(wěn)定在某個常數(shù)(事件發(fā)生的概率)附近,說明概率是個定值,而頻率隨不同試驗(yàn)次數(shù)而有所不同,是概率的近似值,二者不能簡單地等同.

初中數(shù)學(xué)知識點(diǎn)歸納3

圓需要大家掌握的知識體系概括起來主要包括3塊內(nèi)容:與圓有關(guān)的性質(zhì),與圓有關(guān)的位置關(guān)系,與圓有關(guān)的計算。上周給大家總結(jié)了與圓有關(guān)性質(zhì)的考點(diǎn),今天將為大家總結(jié)與圓有關(guān)的位置關(guān)系和與圓有關(guān)的計算。

一、考點(diǎn)分析考點(diǎn)一、點(diǎn)和圓的位置關(guān)系

設(shè)⊙O的半徑是r,點(diǎn)P到圓心O的距離為d,則有:

d

d=r點(diǎn)P在⊙O上;

d>r點(diǎn)P在⊙O外。

考點(diǎn)二、過三點(diǎn)的圓

1、過三點(diǎn)的圓

不在同一直線上的三個點(diǎn)確定一個圓。

2、三角形的外接圓

經(jīng)過三角形的三個頂點(diǎn)的圓叫做三角形的外接圓。

3、三角形的外心

三角形的外接圓的圓心是三角形三條邊的垂直平分線的交點(diǎn),它叫做這個三角形的外心。

4、圓內(nèi)接四邊形性質(zhì)(四點(diǎn)共圓的判定條件)

圓內(nèi)接四邊形對角互補(bǔ)。

考點(diǎn)三、直線與圓的位置關(guān)系

直線和圓有三種位置關(guān)系,具體如下:

(1)相交:直線和圓有兩個公共點(diǎn)時,叫做直線和圓相交,這時直線叫做圓的割線,公共點(diǎn)叫做交點(diǎn);

(2)相切:直線和圓有公共點(diǎn)時,叫做直線和圓相切,這時直線叫做圓的切線,

(3)相離:直線和圓沒有公共點(diǎn)時,叫做直線和圓相離。

如果⊙O的半徑為r,圓心O到直線l的距離為d,那么:

直線l與⊙O相交d

直線l與⊙O相切d=r;

直線l與⊙O相離d>r;

考點(diǎn)四、圓內(nèi)接四邊形

圓的內(nèi)接四邊形定理:圓的內(nèi)接四邊形的對角互補(bǔ),外角等于它的內(nèi)對角。


精選圖文

221381
Z范文網(wǎng)范文協(xié)會網(wǎng)、范文檔案館