在學習新知識的同時還要復(fù)習以前的舊知識,肯定會累,所以要注意勞逸結(jié)合。只有充沛的精力才能迎接新的挑戰(zhàn),才會有事半功倍的學習。下面就是小編給大家?guī)淼母叨?shù)學知識點總結(jié),希望能幫助到大家!
高二數(shù)學知識點總結(jié)1
1、學會三視圖的分析:
2、斜二測畫法應(yīng)注意的地方:
(1)在已知圖形中取互相垂直的軸Ox、Oy。畫直觀圖時,把它畫成對應(yīng)軸o'x'、o'y'、使∠x'o'y'=45°(或135°);(2)平行于x軸的線段長不變,平行于y軸的線段長減半.(3)直觀圖中的45度原圖中就是90度,直觀圖中的90度原圖一定不是90度.
3、表(側(cè))面積與體積公式:
⑴柱體:①表面積:S=S側(cè)+2S底;②側(cè)面積:S側(cè)=;③體積:V=S底h
⑵錐體:①表面積:S=S側(cè)+S底;②側(cè)面積:S側(cè)=;③體積:V=S底h:
⑶臺體①表面積:S=S側(cè)+S上底S下底②側(cè)面積:S側(cè)=
⑷球體:①表面積:S=;②體積:V=
4、位置關(guān)系的證明(主要方法):注意立體幾何證明的書寫
(1)直線與平面平行:①線線平行線面平行;②面面平行線面平行。
(2)平面與平面平行:①線面平行面面平行。
(3)垂直問題:線線垂直線面垂直面面垂直。核心是線面垂直:垂直平面內(nèi)的兩條相交直線
5、求角:(步驟-------Ⅰ.找或作角;Ⅱ.求角)
⑴異面直線所成角的求法:平移法:平移直線,構(gòu)造三角形;
⑵直線與平面所成的角:直線與射影所成的角
高二數(shù)學知識點總結(jié)2
異面直線定義:不同在任何一個平面內(nèi)的兩條直線
異面直線性質(zhì):既不平行,又不相交.
異面直線判定:過平面外一點與平面內(nèi)一點的直線與平面內(nèi)不過該店的直線是異面直線
異面直線所成角:作平行,令兩線相交,所得銳角或直角,即所成角.兩條異面直線所成角的范圍是(0°,90°],若兩條異面直線所成的角是直角,我們就說這兩條異面直線互相垂直.
求異面直線所成角步驟:
A、利用定義構(gòu)造角,可固定一條,平移另一條,或兩條同時平移到某個特殊的位置,頂點選在特殊的位置上.B、證明作出的角即為所求角C、利用三角形來求角
(7)等角定理:如果一個角的兩邊和另一個角的兩邊分別平行,那么這兩角相等或互補.
(8)空間直線與平面之間的位置關(guān)系
直線在平面內(nèi)——有無數(shù)個公共點.
三種位置關(guān)系的符號表示:aαa∩α=Aaα
(9)平面與平面之間的位置關(guān)系:平行——沒有公共點;αβ
相交——有一條公共直線.α∩β=b
2、空間中的平行問題
(1)直線與平面平行的判定及其性質(zhì)
線面平行的判定定理:平面外一條直線與此平面內(nèi)一條直線平行,則該直線與此平面平行.
線線平行線面平行
線面平行的性質(zhì)定理:如果一條直線和一個平面平行,經(jīng)過這條直線的平面和這個平面相交,
那么這條直線和交線平行.線面平行線線平行
(2)平面與平面平行的判定及其性質(zhì)
兩個平面平行的判定定理
(1)如果一個平面內(nèi)的兩條相交直線都平行于另一個平面,那么這兩個平面平行
(線面平行→面面平行),
(2)如果在兩個平面內(nèi),各有兩組相交直線對應(yīng)平行,那么這兩個平面平行.
(線線平行→面面平行),
(3)垂直于同一條直線的兩個平面平行,
高二數(shù)學知識點總結(jié)3
等腰直角三角形面積公式:S=a2/2,S=ch/2=c2/4(其中a為直角邊,c為斜邊,h為斜邊上的高)。
面積公式
若假設(shè)等腰直角三角形兩腰分別為a,b,底為c,則可得其面積:
S=ab/2。
且由等腰直角三角形性質(zhì)可知:底邊c上的高h=c/2,則三角面積可表示為:
S=ch/2=c2/4。
等腰直角三角形是一種特殊的三角形,具有所有三角形的性質(zhì):穩(wěn)定性,兩直角邊相等直角邊夾一直角銳角45°,斜邊上中線角平分線垂線三線合一。
高二數(shù)學知識點總結(jié)4
(1)必然事件:在條件S下,一定會發(fā)生的事件,叫相對于條件S的必然事件;
(2)不可能事件:在條件S下,一定不會發(fā)生的事件,叫相對于條件S的不可能事件;
(3)確定事件:必然事件和不可能事件統(tǒng)稱為相對于條件S的確定事件;
(4)隨機事件:在條件S下可能發(fā)生也可能不發(fā)生的事件,叫相對于條件S的隨機事件;
(5)頻數(shù)與頻率:在相同的條件S下重復(fù)n次試驗,觀察某一事件A是否出現(xiàn),稱n次試驗中事件A出現(xiàn)的次數(shù)nA為事件A出現(xiàn)的頻數(shù);稱事件A出現(xiàn)的比例fn(A)=nnA為事件A出現(xiàn)的概率:對于給定的隨機事件A,如果隨著試驗次數(shù)的增加,事件A發(fā)生的頻率fn(A)穩(wěn)定在某個常數(shù)上,把這個常數(shù)記作P(A),稱為事件A的概率。
(6)頻率與概率的區(qū)別與聯(lián)系:隨機事件的頻率,指此事件發(fā)生的次數(shù)nA與試驗總次數(shù)n的比值nnA,它具有一定的穩(wěn)定性,總在某個常數(shù)附近擺動,且隨著試驗次數(shù)的不斷增多,這種擺動幅度越來越小。我們把這個常數(shù)叫做隨機事件的概率,概率從數(shù)量上反映了隨機事件發(fā)生的可能性的大小。頻率在大量重復(fù)試驗的前提下可以近似地作為這個事件的概率。
高二數(shù)學知識點總結(jié)5
簡單隨機抽樣
1.總體和樣本
在統(tǒng)計學中,把研究對象的全體叫做總體.
把每個研究對象叫做個體.
把總體中個體的總數(shù)叫做總體容量.
為了研究總體的有關(guān)性質(zhì),一般從總體中隨機抽取一部分:
研究,我們稱它為樣本.其中個體的個數(shù)稱為樣本容量.
2.簡單隨機抽樣,也叫純隨機抽樣。就是從總體中不加任何分組、劃類、排隊等,完全隨
機地抽取調(diào)查單位。特點是:每個樣本單位被抽中的可能性相同(概率相等),樣本的每個單位完全獨立,彼此間無一定的關(guān)聯(lián)性和排斥性。簡單隨機抽樣是其它各種抽樣形式的基礎(chǔ)。通常只是在總體單位之間差異程度較小和數(shù)目較少時,才采用這種方法。
3.簡單隨機抽樣常用的方法:
抽簽法;隨機數(shù)表法;計算機模擬法;使用統(tǒng)計軟件直接抽取。
在簡單隨機抽樣的樣本容量設(shè)計中,主要考慮:①總體變異情況;②允許誤差范圍;③概率保證程度。
4.抽簽法:
(1)給調(diào)查對象群體中的每一個對象編號;
(2)準備抽簽的工具,實施抽簽
(3)對樣本中的每一個個體進行測量或調(diào)查
例:請調(diào)查你所在的學校的學生做喜歡的體育活動情況。
5.隨機數(shù)表法:
例:利用隨機數(shù)表在所在的班級中抽取10位同學參加某項活動。
系統(tǒng)抽樣
1.系統(tǒng)抽樣(等距抽樣或機械抽樣):
把總體的單位進行排序,再計算出抽樣距離,然后按照這一固定的抽樣距離抽取樣本。第一個樣本采用簡單隨機抽樣的辦法抽取。
K(抽樣距離)=N(總體規(guī)模)/n(樣本規(guī)模)
前提條件:總體中個體的排列對于研究的變量來說,應(yīng)是隨機的,即不存在某種與研究變量相關(guān)的規(guī)則分布。可以在調(diào)查允許的條件下,從不同的樣本開始抽樣,對比幾次樣本的特點。如果有明顯差別,說明樣本在總體中的分布承某種循環(huán)性規(guī)律,且這種循環(huán)和抽樣距離重合。
2.系統(tǒng)抽樣,即等距抽樣是實際中最為常用的抽樣方法之一。因為它對抽樣框的要求較低,實施也比較簡單。更為重要的是,如果有某種與調(diào)查指標相關(guān)的輔助變量可供使用,總體單元按輔助變量的大小順序排隊的話,使用系統(tǒng)抽樣可以大大提高估計精度。
高二數(shù)學必背知識點歸納相關(guān)文章:
1.
2.高二數(shù)學必背知識點總結(jié)大全
3.高二數(shù)學必背知識點歸納最新5篇最新
4.高二生物必修三必背知識點最新總結(jié)五篇
5.高二數(shù)學精選必背知識點
6.高二數(shù)學必修五知識點總結(jié)精選最新5篇
7.高二數(shù)學必修五知識點精選總結(jié)5篇分享
8.高二物理必背知識點總結(jié)大全
9.2020高二數(shù)學知識點精選歸納
10.高二數(shù)學知識點最新整理5篇分享
高二寫人作文父親800字
![](/skin/tiku/images/icon_star.png)
![](/skin/tiku/images/icon_star.png)
![](/skin/tiku/images/icon_star.png)
![](/skin/tiku/images/icon_star.png)
![](/skin/tiku/images/icon_star.png)
上一篇:高二數(shù)學必背知識點歸納
下一篇:2020父親節(jié)高二作文