中文字幕人妻色偷偷久久_天天鲁一鲁摸一摸爽一爽_最新亚洲人成网站在线观看_999久久久免费精品国产_久久精品丝袜高跟鞋

歡迎訪一網(wǎng)寶!您身邊的知識小幫手,專注做最新的學(xué)習(xí)參考資料!

分類學(xué)前班數(shù)學(xué)教案

一網(wǎng)寶 分享 時間: 加入收藏 我要投稿 點贊

一元二次方程是只含有一個未知數(shù),且未知數(shù)的最高次數(shù)是二次的多項式方程。一元二次方程經(jīng)過整理都可化成一般形式ax2+bx+c=0(a≠0),其中ax2叫作二次項,a是二次項系數(shù);bx叫作一次項,b是一次項系數(shù);下面是小編為大家整理的一元二次方程數(shù)學(xué)教學(xué)教案5篇,希望大家能有所收獲!

一元二次方程數(shù)學(xué)教學(xué)教案1

一、教材分析

1、教材的地位和作用

一元二次方程是中學(xué)教學(xué)的主要內(nèi)容,在初中代數(shù)中占有重要的地位,在一元二次方程的前面,學(xué)生學(xué)了實數(shù)與代數(shù)式的運算,一元一次方程(包括可化為一元一次方程的分式方程)和一次方程組,上述內(nèi)容都是學(xué)習(xí)一元二次方程的基礎(chǔ),通過一元二次方程的學(xué)習(xí),就可以對上述內(nèi)容加以鞏固,一元二次方程也是以后學(xué)習(xí)(指數(shù)方式,對數(shù)方程,三角方程以及不等式,函數(shù),二次曲線等內(nèi)容)的基礎(chǔ),此外,學(xué)習(xí)一元二次方程對其他學(xué)科也有重要的意義。

2、教學(xué)目標(biāo)及確立目標(biāo)的依據(jù)

九年義務(wù)教育大綱對這部分的要求是:“使學(xué)生了解一元二次方程的概念”,依據(jù)教學(xué)大綱的要求及教材的內(nèi)容,針對學(xué)生的理解和接受知識的實際情況,以提高學(xué)生的素質(zhì)為主要目的而制定如下教學(xué)目標(biāo)。

知識目標(biāo):使學(xué)生進(jìn)一步理解和掌握一元二次方程的概念及一元二次方程的一般形式。

能力目標(biāo):通過一元二次方程概念的教學(xué),培養(yǎng)學(xué)生善于觀察,發(fā)現(xiàn),探索,歸納問題的能力,培養(yǎng)學(xué)生創(chuàng)造性思維和邏輯推理的能力。

德育目標(biāo):培養(yǎng)學(xué)生把感性認(rèn)識上升到理性認(rèn)識的辯證唯物主義的觀點。

3、重點,難點及確定重難點的依據(jù)

“一元二次方程”有著承上啟下的作用,在今后的學(xué)習(xí)中有廣泛的應(yīng)用,因此本節(jié)課做為起始課的重點是一元二次方程的概念,一元二次方程(特別是含有字母系數(shù)的)化成一般形式是本節(jié)課的難點。

二、教材處理

在教學(xué)中,我發(fā)現(xiàn)有的學(xué)生對概念背得很熟,但在準(zhǔn)確和熟練應(yīng)用方面較差,缺乏應(yīng)變能力,針對學(xué)生中存在的這些問題,本節(jié)課突出對教學(xué)概念形成過程的教學(xué),采用探索發(fā)現(xiàn)的方法研究概念,并引導(dǎo)學(xué)生進(jìn)行創(chuàng)造性學(xué)習(xí)。

三、教學(xué)方法和學(xué)法

教學(xué)中,我運用啟發(fā)引導(dǎo)的方法讓學(xué)生從一元一次方程入手,類比發(fā)現(xiàn)并歸納出一元二次方程的概念,啟發(fā)學(xué)生發(fā)現(xiàn)規(guī)律,并總結(jié)規(guī)律,最后達(dá)到問題解決。

四、教學(xué)手段

采用投影儀

五、教學(xué)程序

1、新課導(dǎo)入:

(1)什么叫一元一次方程?(并引入一元二次方程的概念做鋪墊)

(2)列方程解應(yīng)用題的方法,步驟?(并引例打基礎(chǔ))

課本引例(如圖)由教師提出并分析其中的數(shù)量關(guān)系。(用實際問題引出一元二次方程,可以幫助學(xué)生認(rèn)識到一元二次方程是來源于客觀需要的)

設(shè)出求知數(shù),列出代數(shù)式,并根據(jù)等量關(guān)系列出方程

一元二次方程數(shù)學(xué)教學(xué)教案2

教學(xué)目標(biāo)

(一)教學(xué)知識點

1.經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,體會方程與函數(shù)之間的聯(lián)系.

2.理解二次函數(shù)與x軸交點的個數(shù)與一元二次方程的根的個數(shù)之間的關(guān)系,理解何時方程有兩個不等的實根、兩個相等的實數(shù)和沒有實根.

3.理解一元二次方程的根就是二次函數(shù)與y=h(h是實數(shù))交點的橫坐標(biāo).

(二)能力訓(xùn)練要求

1.經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,培養(yǎng)學(xué)生的探索能力和創(chuàng)新精神.

2.通過觀察二次函數(shù)圖象與x軸的交點個數(shù),討論一元二次方程的根的情況,進(jìn)一步培養(yǎng)學(xué)生的數(shù)形結(jié)合思想.

3.通過學(xué)生共同觀察和討論,培養(yǎng)大家的合作交流意識.

(三)情感與價值觀要求

1.經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,體驗數(shù)學(xué)活動充滿著探索與創(chuàng)造,感受數(shù)學(xué)的嚴(yán)謹(jǐn)性以及數(shù)學(xué)結(jié)論的確定性.

2.具有初步的創(chuàng)新精神和實踐能力.

教學(xué)重點

1.體會方程與函數(shù)之間的聯(lián)系.

2.理解何時方程有兩個不等的實根,兩個相等的實數(shù)和沒有實根.

3.理解一元二次方程的根就是二次函數(shù)與y=h(h是實數(shù))交點的橫坐標(biāo).

教學(xué)難點

1.探索方程與函數(shù)之間的聯(lián)系的過程.

2.理解二次函數(shù)與x軸交點的個數(shù)與一元二次方程的根的個數(shù)之間的關(guān)系.

教學(xué)方法

討論探索法.

教具準(zhǔn)備

投影片二張

第一張:(記作§2.8.1A)

第二張:(記作§2.8.1B)

教學(xué)過程

Ⅰ.創(chuàng)設(shè)問題情境,引入新課

[師]我們學(xué)習(xí)了一元一次方程kx+b=0(k≠0)和一次函數(shù)y=kx+b(k≠0)后,討論了它們之間的關(guān)系.當(dāng)一次函數(shù)中的函數(shù)值y=0時,一次函數(shù)y=kx+b就轉(zhuǎn)化成了一元一次方程kx+b=0,且一次函數(shù)y=kx+b(k≠0)的圖象與x軸交點的橫坐標(biāo)即為一元一次方程kx+b=0的解.

現(xiàn)在我們學(xué)習(xí)了一元二次方程ax2+bx+c=0(a≠0)和二次函數(shù)y=ax2+bx+c(a≠0),它們之間是否也存在一定的關(guān)系呢?本節(jié)課我們將探索有關(guān)問題.

一元二次方程數(shù)學(xué)教學(xué)教案3

教學(xué)內(nèi)容

一元二次方程概念及一元二次方程一般式及有關(guān)概念. 教學(xué)目標(biāo)

2

了解一元二次方程的概念;一般式ax+bx+c=0(a≠0)及其派生的概念;?應(yīng)用一元二次方程概念解決一些簡單題目.

1.通過設(shè)臵問題,建立數(shù)學(xué)模型,?模仿一元一次方程概念給一元二次方程下定義. 2.一元二次方程的一般形式及其有關(guān)概念. 3.解決一些概念性的題目.

4.通過生活學(xué)習(xí)數(shù)學(xué),并用數(shù)學(xué)解決生活中的問題來激發(fā)學(xué)生的學(xué)習(xí)熱情. 重難點關(guān)鍵

1.?重點:一元二次方程的概念及其一般形式和一元二次方程的有關(guān)概念并用這些概念解決問題. 2.難點關(guān)鍵:通過提出問題,建立一元二次方程的數(shù)學(xué)模型,?再由一元一次方程的概念遷移到一元二次方程的概念. 教學(xué)過程

一、復(fù)習(xí)引入

學(xué)生活動:列方程. 問題(1)古算趣題:“執(zhí)竿進(jìn)屋”

笨人執(zhí)竿要進(jìn)屋,無奈門框攔住竹,橫多四尺豎多二,沒法急得放聲哭。 有個鄰居聰明者,教他斜竿對兩角,笨伯依言試一試,不多不少剛抵足。 借問竿長多少數(shù),誰人算出我佩服。

如果假設(shè)門的高為x?尺,?那么,?這個門的寬為_______?尺,長為_______?尺, ?根據(jù)題意,?得________. 整理、化簡,得:__________. 二、探索新知

學(xué)生活動:請口答下面問題.

(1)上面三個方程整理后含有幾個未知數(shù)?

(2)按照整式中的多項式的規(guī)定,它們次數(shù)是幾次? (3)有等號嗎?還是與多項式一樣只有式子? 老師點評:(1)都只含一個未知數(shù)x;(2)它們的次數(shù)都是2次的;(3)?都有等號,是方程. 因此,像這樣的方程兩邊都是整式,只含有一個未知數(shù)(一元),并且未知數(shù)的次數(shù)是2(二次)的方程,叫做一元二次方程.

2

一般地,任何一個關(guān)于x的一元二次方程,?經(jīng)過整理,?都能化成如下形式ax+bx+c=0(a≠0).這種形式叫做一元二次方程的一般形式.

2

一個一元二次方程經(jīng)過整理化成ax+bx+c=0(a≠0)后,其中ax是二次項,a是二次項系數(shù);bx是一次項,b是一次項系數(shù);c是常數(shù)項.

例1.將方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并寫出其中的二次項系數(shù)、一次項系數(shù)及常數(shù)項.

2

分析:一元二次方程的一般形式是ax+bx+c=0(a≠0).因此,方程3x(x-1)=5(x+2)必須運用整式運算進(jìn)行整理,包括去括號、移項等.

解:略

注意:二次項、二次項系數(shù)、一次項、一次項系數(shù)、常數(shù)項都包括前面的符號.

2

例2.(學(xué)生活動:請二至三位同學(xué)上臺演練) 將方程(x+1)+(x-2)(x+2)=?1化成一元二次方程的一般形式,并寫出其中的二次項、二次項系數(shù);一次項、一次項系數(shù);常數(shù)項.

22

分析:通過完全平方公式和平方差公式把(x+1)+(x-2)(x+2)=1化成ax+bx+c=0(a≠0)的形式. 解:略

三、鞏固練習(xí)

教材 練習(xí)1、2

補充練習(xí):判斷下列方程是否為一元二次方程?

(1)3x+2=5y-3 (2) x=4 (3) 3x-2

2

22

52 2 2

=0 (4) x-4=(x+2) (5) ax+bx+c=0 x

四、應(yīng)用拓展

22

例3.求證:關(guān)于x的方程(m-8m+17)x+2mx+1=0,不論m取何值,該方程都是一元二次方程.

2

分析:要證明不論m取何值,該方程都是一元二次方程,只要證明m-8m+17?≠0即可.

22

證明:m-8m+17=(m-4)+1

2

∵(m-4)≥0

22

∴(m-4)+1>0,即(m-4)+1≠0

∴不論m取何值,該方程都是一元二次方程.

2

? 練習(xí): 1.方程(2a—4)x—2bx+a=0, 在什么條件下此方程為一元二次方程?在什么條件下此方程為

一元一次方程?

/4m/-4

2.當(dāng)m為何值時,方程(m+1)x+27mx+5=0是關(guān)于的一元二次方程 五、歸納小結(jié)(學(xué)生總結(jié),老師點評) 本節(jié)課要掌握:

2

(1)一元二次方程的概念;(2)一元二次方程的一般形式ax+bx+c=0(a≠0)?和二次項、二次項系數(shù),一次項、一次項系數(shù),常數(shù)項的概念及其它們的運用. 六、布臵作業(yè)

第2課時 21.1 一元二次方程

教學(xué)內(nèi)容

1.一元二次方程根的概念;

2.?根據(jù)題意判定一個數(shù)是否是一元二次方程的根及其利用它們解決一些具體題目. 教學(xué)目標(biāo)

了解一元二次方程根的概念,會判定一個數(shù)是否是一個一元二次方程的根及利用它們解決一些具體問題. 提出問題,根據(jù)問題列出方程,化為一元二次方程的一般形式,列式求解;由解給出根的概念;再由根的概念判定一個數(shù)是否是根.同時應(yīng)用以上的幾個知識點解決一些具體問題. 重難點關(guān)鍵

1.重點:判定一個數(shù)是否是方程的根;

2.?難點關(guān)鍵:由實際問題列出的一元二次方程解出根后還要考慮這些根是否確定是實際問題的根.

教學(xué)過程

一、復(fù)習(xí)引入

學(xué)生活動:請同學(xué)獨立完成下列問題.

2

問題1.前面有關(guān)“執(zhí)竿進(jìn)屋”的問題中,我們列得方程x-8x+20=0

列表:

問題2列表:

3

老師點評(略) 二、探索新知 提問:(1)問題1中一元二次方程的解是多少?問題2?中一元二次方程的解是多少? (2)如果拋開實際問題,問題2中還有其它解嗎?

22

老師點評:(1)問題1中x=2與x=10是x-8x+20=0的解,問題2中,x=4是x+7x-44=0的解.(2)如

果拋開實際問題,問題2中還有x=-11的解.

一元二次方程的解也叫做一元二次方程的根.

2

回過頭來看:x-8x+20=0有兩個根,一個是2,另一個是10,都滿足題意;但是,問題2中的x=-11的根不滿足題意.因此,由實際問題列出方程并解得的根,并不一定是實際問題的根,還要考慮這些根是否確實是實際問題的解.

2

例1.下面哪些數(shù)是方程2x+10x+12=0的根? -4,-3,-2,-1,0,1,2,3,4.

分析:要判定一個數(shù)是否是方程的根,只要把其代入等式,使等式兩邊相等即可.

2

解:將上面的這些數(shù)代入后,只有-2和-3滿足方程的等式,所以x=-2或x=-3是一元二次方程2x+10x+12=0的兩根.

2

例2.若x=1是關(guān)于x的一元二次方程a x+bx+c=0(a≠0)的一個根,求代數(shù)式2007(a+b+c)的值

2 2

練習(xí):關(guān)于x的一元二次方程(a-1) x+x+a-1=0的一個根為0,則求a的值

點撥:如果一個數(shù)是方程的根,那么把該數(shù)代入方程,一定能使左右兩邊相等,這種解決問題的思維方法經(jīng)常用到,同學(xué)們要深刻理解.

例3.你能用以前所學(xué)的知識求出下列方程的根嗎?

222

(1)x-64=0 (2)3x-6=0 (3)x-3x=0

分析:要求出方程的根,就是要求出滿足等式的數(shù),可用直接觀察結(jié)合平方根的意義. 解:略

三、鞏固練習(xí)

教材 思考題 練習(xí)1、2.

四、歸納小結(jié)(學(xué)生歸納,老師點評) 本節(jié)課應(yīng)掌握:

(1)一元二次方程根的概念;

(2)要會判斷一個數(shù)是否是一元二次方程的根;

(3)要會用一些方法求一元二次方程的根.(“夾逼”方法; 平方根的意義) 六、布臵作業(yè)

1.教材 復(fù)習(xí)鞏固3、4 綜合運用5、6、7 拓廣探索8、9. 2.選用課時作業(yè)設(shè)計.

第3課時 21.2.1 配方法

教學(xué)內(nèi)容

運用直接開平方法,即根據(jù)平方根的意義把一個一元二次方程“降次”,轉(zhuǎn)化為兩個一元一次方程. 教學(xué)目標(biāo)

理解一元二次方程“降次”──轉(zhuǎn)化的數(shù)學(xué)思想,并能應(yīng)用它解決一些具體問題.

2

提出問題,列出缺一次項的一元二次方程ax+c=0,根據(jù)平方根的意義解出這個方程,然后知識遷移到解

2

a(ex+f)+c=0型的一元二次方程. 重難點關(guān)鍵

2

1.重點:運用開平方法解形如(x+m)=n(n≥0)的方程;領(lǐng)會降次──轉(zhuǎn)化的數(shù)學(xué)思想.

22

2.難點與關(guān)鍵:通過根據(jù)平方根的意義解形如x=n,知識遷移到根據(jù)平方根的意義解形如(x+m)=n(n≥0)的方程. 教學(xué)過程

一、復(fù)習(xí)引入

學(xué)生活動:請同學(xué)們完成下列各題 問題1.填空

222222

(1)x-8x+______=(x-______);(2)9x+12x+_____=(3x+_____);(3)x+px+_____=(x+____). 問題1:根據(jù)完全平方公式可得:(1)16 4;(2)4 2;(3)(

p2p

) . 22

問題2:目前我們都學(xué)過哪些方程?二元怎樣轉(zhuǎn)化成一元?一元二次方程于一元一次方程有什么不同?二次如

何轉(zhuǎn)化成一次?怎樣降次?以前學(xué)過哪些降次的方法? 二、探索新知

4

上面我們已經(jīng)講了x=9,根據(jù)平方根的意義,直接開平方得x=〒3,如果x換元為2t+1,即(2t+1)=9,能否也用直接開平方的方法求解呢? (學(xué)生分組討論)

老師點評:回答是肯定的,把2t+1變?yōu)樯厦娴膞,那么2t+1=〒3 即2t+1=3,2t+1=-3

方程的兩根為t1=1,t2=--2

2 2 2

例1:解方程:(1)(2x-1)=5 (2)x+6x+9=2 (3)x-2x+4=-1

22

分析:很清楚,x+4x+4是一個完全平方公式,那么原方程就轉(zhuǎn)化為(x+2)=1.

2

解:(2)由已知,得:(x+3)=2 直接開平方,得:x+3=

所以,方程的兩根x1

x2

2

例2.市政府計劃2年內(nèi)將人均住房面積由現(xiàn)在的10m提高到14.4m,求每年人均住房面積增長率. 分析:設(shè)每年人均住房面積增長率為x.?一年后人均住房面積就應(yīng)該是10+?10x=10(1+x);二年后人均

2

住房面積就應(yīng)該是10(1+x)+10(1+x)x=10(1+x) 解:設(shè)每年人均住房面積增長率為x,

2

則:10(1+x)=14.4

2

(1+x)=1.44

直接開平方,得1+x=〒1.2 即1+x=1.2,1+x=-1.2

所以,方程的兩根是x1=0.2=20%,x2=-2.2

因為每年人均住房面積的增長率應(yīng)為正的,因此,x2=-2.2應(yīng)舍去. 所以,每年人均住房面積增長率應(yīng)為20%.

(學(xué)生小結(jié))老師引導(dǎo)提問:解一元二次方程,它們的共同特點是什么? 共同特點:把一個一元二次方程“降次”,轉(zhuǎn)化為兩個一元一次方程.?我們把這種思想稱為“降次轉(zhuǎn)化思想”.

三、鞏固練習(xí)

教材 練習(xí). 四、應(yīng)用拓展

例3.某公司一月份營業(yè)額為1萬元,第一季度總營業(yè)額為3.31萬元,求該公司二、三月份營業(yè)額平均增長率是多少?

分析:設(shè)該公司二、三月份營業(yè)額平均增長率為x,?那么二月份的營業(yè)額就應(yīng)該是(1+x),三月份的營

2

業(yè)額是在二月份的基礎(chǔ)上再增長的,應(yīng)是(1+x). 解:設(shè)該公司二、三月份營業(yè)額平均增長率為x.

2

那么1+(1+x)+(1+x)=3.31 把(1+x)當(dāng)成一個數(shù),配方得:

22

1232

)=2.56,即(x+)=2.56 22333

x+=〒1.6,即x+=1.6,x+=-1.6

222

(1+x+

方程的根為x1=10%,x2=-3.1

因為增長率為正數(shù),

所以該公司二、三月份營業(yè)額平均增長率為10%. 五、歸納小結(jié)

本節(jié)課應(yīng)掌握: 由應(yīng)用直接開平方法解形如x=p(p≥0),那么x=

解形如(mx+n)=p(p≥0),那么mx+n=

六、布臵作業(yè)

1.教材 復(fù)習(xí)鞏固1、2.

第4課時 22.2.1 配方法(1)

教學(xué)內(nèi)容

間接即通過變形運用開平方法降次解方程. 教學(xué)目標(biāo)

5

2

2

p<0則方程無解

一元二次方程數(shù)學(xué)教學(xué)教案4

教學(xué)目標(biāo):

知識與技能目標(biāo):

通過對實際問題的分析,使學(xué)生進(jìn)一步體會方程組是刻畫現(xiàn)實世界的有效數(shù)學(xué)模型,初步掌握列二元一次方程組解應(yīng)用題.初步體會解二元一次方程組的基本思想“消元”。

培養(yǎng)學(xué)生列方程組解決實際問題的意識,增強學(xué)生的數(shù)學(xué)應(yīng)用能力。

過程與方法目標(biāo):

經(jīng)歷和體驗列方程組解決實際問題的過程,進(jìn)一步體會方程(組)是刻畫現(xiàn)實世界的有效數(shù)學(xué)模型。

情感態(tài)度與價值觀目標(biāo):

1.進(jìn)一步豐富學(xué)生數(shù)學(xué)學(xué)習(xí)的成功體驗,激發(fā)學(xué)生對數(shù)學(xué)學(xué)習(xí)的好奇心,進(jìn)一步形成積極參與數(shù)學(xué)活動、主動與他人合作交流的意識.

2.通過"雞兔同籠",把同學(xué)們帶入古代的數(shù)學(xué)問題情景,學(xué)生體會到數(shù)學(xué)中的"趣";進(jìn)一步強調(diào)課堂與生活的聯(lián)系,突出顯示數(shù)學(xué)教學(xué)的實際價值,培養(yǎng)學(xué)生的人文精神。重點:

經(jīng)歷和體驗列方程組解決實際問題的過程;增強學(xué)生的數(shù)學(xué)應(yīng)用能力。

難點:

確立等量關(guān)系,列出正確的二元一次方程組。

教學(xué)流程:

課前回顧

復(fù)習(xí):列一元一次方程解應(yīng)用題的一般步驟

情境引入

探究1:今有雞兔同籠,

上有三十五頭,

下有九十四足,

問雞兔各幾何?

“雉兔同籠”題:今有雉(雞)兔同籠,上有35頭,下有94足,問雉兔各幾何?

(1)畫圖法

用表示頭,先畫35個頭

將所有頭都看作雞的,用表示腿,畫出了70只腿

還剩24只腿,在每個頭上在加兩只腿,共12個頭加了兩只腿

四條腿的是兔子(12只),兩條腿的是雞(23只)

(2)一元一次方程法:

雞頭+兔頭=35

雞腳+兔腳=94

設(shè)雞有x只,則兔有(35-x)只,據(jù)題意得:

2x+4(35-x)=94

比算術(shù)法容易理解

想一想:那我們能不能用更簡單的方法來解決這些問題呢?

回顧上節(jié)課學(xué)習(xí)過的二元一次方程,能不能解決這一問題?

(3)二元一次方程法

今有雞兔同籠,上有三十五頭,下有九十四足,問雞兔各幾何?

(1)上有三十五頭的意思是雞、兔共有頭35個,

下有九十四足的意思是雞、兔共有腳94只.

(2)如設(shè)雞有x只,兔有y只,那么雞兔共有(x+y)只;

雞足有2x只;兔足有4y只.

解:設(shè)籠中有雞x只,有兔y只,由題意可得:

雞兔合計頭xy35足2x4y94

解此方程組得:

練習(xí)1:

1.設(shè)甲數(shù)為x,乙數(shù)為y,則“甲數(shù)的二倍與乙數(shù)的一半的和是15”,列出方程為_2x+05y=15

2.小剛有5角硬幣和1元硬幣各若干枚,幣值共有六元五角,設(shè)5角有x枚,1元有y枚,列出方程為05x+y=65.

三、合作探究

探究2:以繩測井。若將繩三折測之,繩多五尺;若將繩四折測之,繩多一尺。繩長、井深各幾何?

題目大意:用繩子測水井深度,如果將繩子折成三等份,一份繩長比井深多5尺;如果將繩子折成四等份,一份繩長比井深多1尺。問繩長、井深各是多少尺?

找出等量關(guān)系:

解:設(shè)繩長x尺,井深y尺,則由題意得

x=48

將x=48y=11。

所以繩長4811尺。

想一想:找出一種更簡單的創(chuàng)新解法嗎?

引導(dǎo)學(xué)生逐步得出更簡單的方法:

找出等量關(guān)系:

(井深+5)×3=繩長

(井深+1

解:設(shè)繩長x尺,井深y尺,則由題意得

3(y+5)=x

4(y+1)=x

x=48

y=11

所以繩長48尺,井深11尺。

練習(xí)2:甲、乙兩人賽跑,若乙先跑10米,甲跑5秒即可追上乙;若乙先跑2秒,則甲跑4秒就可追上乙.設(shè)甲速為x米/秒,乙速為y米/秒,則可列方程組為(B).

歸納:

列二元一次方程解決實際問題的一般步驟:

審:審清題目中的等量關(guān)系.

設(shè):設(shè)未知數(shù).

列:根據(jù)等量關(guān)系,列出方程組.

解:解方程組,求出未知數(shù).

答:檢驗所求出未知數(shù)是否符合題意,寫出答案.

四、自主思考

探究3:用長方形和正方形紙板作側(cè)面和底面,做成如圖中豎式和橫式的兩種無蓋紙盒。現(xiàn)在倉庫里有1000張正方形紙板和2000張長方形紙板,問兩種紙盒各做多少只,恰好使庫存的紙板用完?

解:設(shè)做豎式紙盒X個,橫式紙盒y個。根據(jù)題意,得

x+2y=1000

4x+3y=2000

解這個方程組得x=200

y=400

答:設(shè)做豎式紙盒200個,橫式紙盒400個,恰好使庫存的紙板用完。

練習(xí)3:上題中如果改為庫存正方形紙板500,長方形紙板1001張,那么,能否做成若干只豎式紙盒和若干只橫式紙盒后,恰好把庫存紙板用完?

解:設(shè)做豎式紙盒x個,做橫式紙盒y個,根據(jù)題意

y不是自然數(shù),不合題意,所以不可能做成若干個紙盒,恰好不庫存的紙板用完.

歸納:

五、達(dá)標(biāo)測評

1.解下列應(yīng)用題

(1)買一些4分和8分的郵票,共花6元8角,已知8分的郵票比4分的郵票多40張,那么兩種郵票各買了多少張?

解:設(shè)4分郵票x張,8分郵票y張,由題意得:

4x+8y=6800①

y-x=40②

所以,4分郵票540張,8分郵票580張

(2)一項工程,如果全是晴天,15天可以完成,倘若下雨,雨天一天只能完成晴天

的工作量?,F(xiàn)在知道在施工期間雨天比晴天多3天。問這項工程要多少天才能完成

分析:由于工作總量未知,我們將其設(shè)為單位1

晴天一天可完成

雨天一天可完成

解:設(shè)晴天x天,雨天y天,工作總量為單位1,由題意得:

總天數(shù):7+10=17

所以,共17天可完成任務(wù)

六、應(yīng)用提高

學(xué)校買鉛筆、圓珠筆和鋼筆共232支,共花了300元。其中鉛筆數(shù)量是圓珠筆的4倍。已知鉛筆每支0.60元,圓珠筆每支2.7元,鋼筆每支6.3元。問三種筆各有多少支?

分析:鉛筆數(shù)量+圓珠筆數(shù)量+鋼筆數(shù)量=232

鉛筆數(shù)量=圓珠筆數(shù)量×4

鉛筆價格+圓珠筆價格+鋼筆價格=300

解:設(shè)鉛筆x支,圓珠筆y支,鋼筆z支,根據(jù)題意,可得三元一次方程組:

將②代入①和③中,得二元一次方程組

4y+y+z=232④

0.6×4y+2.7x+6.3z=300⑤

解得

所以,鉛筆175支,圓珠筆44支,鋼筆12支

七、體驗收獲

1.解決雞兔同籠問題

2.解決以繩測井問題

3.解應(yīng)用題的一般步驟

七、布置作業(yè)

教材116頁習(xí)題第2、3題。

x+y=35

2x+4y=94

x=23

y=12

繩長的三分之一-井深=5

繩長的四分之一-井深=1

-y=5①

①-②,得

-y=1②

-y=5①

-y=5①

-y=5①

X=540

Y=580

y-x=3②

x=7

y=10

x+y+z=232①

x=4y②

0.6x+2.7y+6.3z=300③

X=176

Y=44

Z=12

一元二次方程數(shù)學(xué)教學(xué)教案5

教學(xué)內(nèi)容:人教版七年級數(shù)學(xué)下冊第八章二元一次方程組第2節(jié)P96頁

教學(xué)目標(biāo)

(1)基礎(chǔ)知識與技能目標(biāo):會用代入消元法解簡單的二元一次方程組。

(2)過程與方法目標(biāo):經(jīng)歷探索代入消元法解二元一次方程的過程,理解代入消元法的基本思想所體現(xiàn)的化歸思想方法。

(3)情感、態(tài)度與價值觀目標(biāo):通過提供適當(dāng)?shù)那榫迟Y料,吸引學(xué)生的注意力,激發(fā)學(xué)生的學(xué)習(xí)興趣;在合作討論中學(xué)會交流與合作,培養(yǎng)良好的數(shù)學(xué)思想,逐步滲透類比、化歸的意識。

教學(xué)重、難點關(guān)鍵

教學(xué)重點:用代入消元法解二元一次方程組

教學(xué)難點:探索如何用代入消元法解二元一次方程組,感受“消元”思想。

教學(xué)關(guān)鍵:把方程組中的某個方程變形,而后代入另一個方程中去,消去一個未知數(shù),轉(zhuǎn)化成一元一次方程。學(xué)生分析授課對象為少數(shù)民族地區(qū)的七年級學(xué)生,基礎(chǔ)知識薄弱,特別是對一元一次方程內(nèi)容掌握的不夠透徹,再加上厭學(xué)現(xiàn)象嚴(yán)峻,團(tuán)結(jié)協(xié)作的能力差,本節(jié)課設(shè)計了他們感興趣的籃球比賽和常用的消毒液作為題材來研究二元一次方程組,既能調(diào)動他們的學(xué)習(xí)興趣,又能解決本節(jié)課所涉及到的問題,為以后的進(jìn)一步學(xué)習(xí)二元一次方程組做好鋪墊。

教學(xué)內(nèi)容分析:本節(jié)主要內(nèi)容是在上節(jié)已認(rèn)識二元一次方程(組)和二元一次方程(組)的解等概念的基礎(chǔ)上,來學(xué)習(xí)解方程組的第一種方法——代入消元法。并初步體會解二元一次方程組的基本思想“消元”。二元一次方程組的求解,不但用到了前面學(xué)過的一元一次方程的解法,是對過去所學(xué)知識的一個回顧和提高,同時,也為后面的利用方程組來解決實際問題打下了基礎(chǔ)。通過實際問題中二元一次方程組的應(yīng)用,進(jìn)一步增強學(xué)生學(xué)習(xí)數(shù)學(xué)、用數(shù)學(xué)的意識,體會學(xué)數(shù)學(xué)的價值和意義。初中階段要掌握的二元一次方程組的消元解法有代入消元法和加減消元法兩種,教材都是按先求解后應(yīng)用的順序安排,這樣安排既可以在前一小節(jié)中有針對性的學(xué)習(xí)解法,又可在后一小節(jié)的應(yīng)用中鞏固前面的知識,但教材相對應(yīng)的練習(xí)安排較少,不過這樣也給了學(xué)生一較大的發(fā)揮空間。

教具準(zhǔn)備教師準(zhǔn)備:ppt多媒體課件投影儀

教學(xué)方法本節(jié)課采用“問題引入——探究解法——歸納反思”的教學(xué)方法,堅持啟發(fā)式教學(xué)。

教學(xué)過程

(一)創(chuàng)設(shè)情境,導(dǎo)入新課籃球聯(lián)賽中,每場比賽都要分出勝負(fù),每隊勝一場得2分,負(fù)一場得1分,保安族中學(xué)校隊為了爭取較好的名次,想在全部22場比賽中得到40分,那么這個隊勝負(fù)場數(shù)分別是多少?

(二)合作交流,探究新知第一步,初步了解代入法1、在上述問題中,除了用一元一次方程解答外,我們還可以設(shè)出兩個未知數(shù),列出二元一次方程組學(xué)生活動:分別列出一元一次方程和二元一次方程組,兩個學(xué)生板演①設(shè)勝的場數(shù)是x,負(fù)的場數(shù)是y

x+y=22

2x+y=40

②設(shè)勝的場數(shù)是x,則負(fù)的場數(shù)為22-x

2x+(22-x)=40

2、自主探究,小組討論那么怎樣求解二元一次方程組呢?上面的二元一次方程組和一元一次方程有什么關(guān)系?

3、學(xué)生歸納,教師作補充上面的解法,第一步是由二元一次方程組中一個方程,將一個未知數(shù)用含另一未知數(shù)的式子表示出來,再代入另一方程,實現(xiàn)消元,進(jìn)而求得這個二元一次方程組的解。這種方法叫做代入消元法,簡稱代入法。

第二步,用代入法解方程組把下列方程寫成用含x的式子表示y的形式(1)2x-y=5(2)4x+3y-1=0學(xué)生活動:嘗試自主完成,教師糾正思考:能否用含y的式子來表示x呢?

例1用代入法解方程組x-y=3①3x-8y=14②

思路點撥:先觀察這個方程組中哪一項系數(shù)較小,發(fā)現(xiàn)①中x的系數(shù)為1,這樣可以確定消x較簡單,首先用含y的代數(shù)式表示x,而后再代入②消元。

解:由①變形得X=y+3③

把③代入②,得3(y+3)-8y=14

解這個方程,得y=-1

把y=-1代入③,得X=2

所以這個方程組的解是X=2y=-1

如何檢驗得到的結(jié)果是否正確?學(xué)生活動:口答檢驗.

第三步,在實際生活中應(yīng)用代入法解方程組

例2根據(jù)市場調(diào)查,某種消毒液的大瓶裝(500g)和小瓶裝(250g)兩種產(chǎn)品的銷售數(shù)量(按瓶計算)比為2:5.某廠每天生產(chǎn)這種消毒液22.5噸,這些消毒液應(yīng)該分裝大、小瓶裝兩種產(chǎn)品各多少瓶?思路點撥:本題是實際應(yīng)用問題,可采用二元一次方程組為工具求解,這就需要構(gòu)建模型,尋找兩個等量關(guān)系,從題意可知:大瓶數(shù):小瓶數(shù)=2:5;大瓶所裝消毒液+小瓶所裝消毒液=總生產(chǎn)量(解題過程略)教師活動:啟發(fā)引導(dǎo)學(xué)生構(gòu)建二元一次方程組的模型。學(xué)生活動:嘗試設(shè)出:這些消毒液應(yīng)該分裝x個大瓶和y個小瓶,得到5x=2y500x+250y=22500000并解出x=20000y=50000

第四步,小組討論,得出步驟學(xué)生活動:根據(jù)例1、例2的解題過程,你們能不能歸納一下用代入法解二元一次方程組的步驟呢?小組討論一下。學(xué)生歸納,教師補充,總結(jié)出代入法解二元一次方程組的步驟:①選取一個系數(shù)較簡單的二元一次方程變形,用含有一個未知數(shù)的代數(shù)式表示另一個未知數(shù);②將變形后的方程代入另一個方程中,消去一個未知數(shù),得到一個一元一次方程(在代入時,要注意不能代入原方程,只能代入另一個沒有變形的方程中,以達(dá)到消元的目的.);③解這個一元一次方程,求出未知數(shù)的值;④將求得的未知數(shù)的值代入①中變形后的方程中,求出另一個未知數(shù)的值;⑤用“{”聯(lián)立兩個未知數(shù)的值,就是方程組的解;⑥最后檢驗求得的結(jié)果是否正確(代入原方程組中進(jìn)行檢驗,方程是否滿足左邊=右邊).

(三)分組比賽,鞏固新知為了激發(fā)學(xué)生的興趣,鞏固所學(xué)的知識,我把全班分成4個小組,把書本P98頁練習(xí)設(shè)計成必答題、搶答題和風(fēng)險題幾個集知識性、趣味性于一體的獨立版塊,練習(xí)是由易到難、由淺到深,以小組比賽的形式呈現(xiàn)出來,這樣既提高了學(xué)生的積極性,培養(yǎng)了團(tuán)隊精神,也使各類學(xué)生的能力都得到不同的發(fā)展。

(四)歸納總結(jié),知識回顧1、通過這節(jié)課的學(xué)習(xí)活動,你有什么收獲?2、你認(rèn)為在運用代入法解二元一次方程組時,應(yīng)注意什么問題?

(五)布置作業(yè)1、作業(yè):P103頁第1、2、4題2、思考:提出在日常生活中可以利用二元一次方程組來解決的實際問題。設(shè)計說明代入消元法體現(xiàn)了數(shù)學(xué)學(xué)習(xí)中“化未知為已知”的化歸思想方法,化歸的原則就是將不熟悉的問題化歸為比較熟悉的問題,用于解決新問題.基于這點認(rèn)識,本課按照“身邊的數(shù)學(xué)問題引入—尋求一元一次方程的解法—探索二元一次方程組的代入消元法—典型例題—歸納代入法的一般步驟”的思路進(jìn)行設(shè)計.在教學(xué)過程中,充分調(diào)動學(xué)生的主觀能動性和發(fā)揮教師的主導(dǎo)作用,堅持啟發(fā)式教學(xué).教師創(chuàng)設(shè)有趣的情境,引發(fā)學(xué)生自覺參與學(xué)習(xí)活動的積極性,使知識發(fā)現(xiàn)過程融于有趣的活動中.重視知識的發(fā)生過程.將設(shè)未知數(shù)列一元一次方程的求解過程與二元一次方程組相比較,從而得到二元一次方程組的代入(消元)解法,這種比較,可使學(xué)生在復(fù)習(xí)舊知識的同時,使新知識得以掌握,這對于學(xué)生體會新知識的產(chǎn)生和形成過程是十分重要的.


精選圖文

221381
Z范文網(wǎng)、范文協(xié)會網(wǎng)、范文檔案館、