教學(xué)難點(diǎn)是靈活應(yīng)用分式的基本性質(zhì)將分式變形.突破的方法是通過復(fù)習(xí)分?jǐn)?shù)的通分、約分總結(jié)出分?jǐn)?shù)的基本性質(zhì),一起看看西工大附中初二數(shù)學(xué)教案!歡迎查閱!
西工大附中初二數(shù)學(xué)教案1
一、教學(xué)目標(biāo)
1.理解分式的基本性質(zhì).
2.會(huì)用分式的基本性質(zhì)將分式變形.
二、重點(diǎn)、難點(diǎn)
1.重點(diǎn):理解分式的基本性質(zhì).
2.難點(diǎn):靈活應(yīng)用分式的基本性質(zhì)將分式變形.
3.認(rèn)知難點(diǎn)與突破方法
教學(xué)難點(diǎn)是靈活應(yīng)用分式的基本性質(zhì)將分式變形.突破的方法是通過復(fù)習(xí)分?jǐn)?shù)的通分、約分總結(jié)出分?jǐn)?shù)的基本性質(zhì),再用類比的方法得出分式的基本性質(zhì).應(yīng)用分式的基本性質(zhì)導(dǎo)出通分、約分的概念,使學(xué)生在理解的基礎(chǔ)上靈活地將分式變形.
三、例、習(xí)題的意圖分析
1.P7的例2是使學(xué)生觀察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后應(yīng)用分式的基本性質(zhì),相應(yīng)地把分子(或分母)乘以或除以了這個(gè)整式,填到括號(hào)里作為答案,使分式的值不變.
2.P9的例3、例4地目的是進(jìn)一步運(yùn)用分式的基本性質(zhì)進(jìn)行約分、通分.值得注意的是:約分是要找準(zhǔn)分子和分母的公因式,最后的結(jié)果要是最簡分式;通分是要正確地確定各個(gè)分母的最簡公分母,一般的取系數(shù)的最小公倍數(shù),以及所有因式的次冪的積,作為最簡公分母.
教師要講清方法,還要及時(shí)地糾正學(xué)生做題時(shí)出現(xiàn)的錯(cuò)誤,使學(xué)生在做提示加深對(duì)相應(yīng)概念及方法的理解.
3.P11習(xí)題16.1的第5題是:不改變分式的值,使下列分式的分子和分母都不含“-”號(hào).這一類題教材里沒有例題,但它也是由分式的基本性質(zhì)得出分子、分母和分式本身的符號(hào),改變其中任何兩個(gè),分式的值不變.
“不改變分式的值,使分式的分子和分母都不含‘-’號(hào)”是分式的基本性質(zhì)的應(yīng)用之一,所以補(bǔ)充例5.
四、課堂引入
1.請(qǐng)同學(xué)們考慮:與相等嗎?與相等嗎?為什么?
2.說出與之間變形的過程,與之間變形的過程,并說出變形依據(jù)?
3.提問分?jǐn)?shù)的基本性質(zhì),讓學(xué)生類比猜想出分式的基本性質(zhì).
五、例題講解
P7例2.填空:
[分析]應(yīng)用分式的基本性質(zhì)把已知的分子、分母同乘以或除以同一個(gè)整式,使分式的值不變.
P11例3.約分:
[分析]約分是應(yīng)用分式的基本性質(zhì)把分式的分子、分母同除以同一個(gè)整式,使分式的值不變.所以要找準(zhǔn)分子和分母的公因式,約分的結(jié)果要是最簡分式.
P11例4.通分:
[分析]通分要想確定各分式的公分母,一般的取系數(shù)的最小公倍數(shù),以及所有因式的次冪的積,作為最簡公分母.
西工大附中初二數(shù)學(xué)教案2
教學(xué)過程
I創(chuàng)設(shè)情境,提出問題
回顧上節(jié)課講過的等邊三角形的有關(guān)知識(shí)
1.等邊三角形是軸對(duì)稱圖形,它有三條對(duì)稱軸.
2.等邊三角形每一個(gè)角相等,都等于60°
3.三個(gè)角都相等的三角形是等邊三角形.
4.有一個(gè)角是60°的等腰三角形是等邊三角形.
其中1、2是等邊三角形的性質(zhì);3、4的等邊三角形的判斷方法.
II例題與練習(xí)
1.△ABC是等邊三角形,以下三種方法分別得到的△ADE都是等邊三角形嗎,為什么?
①在邊AB、AC上分別截取AD=AE.
②作∠ADE=60°,D、E分別在邊AB、AC上.
③過邊AB上D點(diǎn)作DE∥BC,交邊AC于E點(diǎn).
2.已知:如右圖,P、Q是△ABC的邊BC上的兩點(diǎn),,并且PB=PQ=QC=AP=AQ.求∠BAC的大小.
分析:由已知顯然可知三角形APQ是等邊三角形,每個(gè)角都是60°.又知△APB與△AQC都是等腰三角形,兩底角相等,由三角形外角性質(zhì)即可推得∠PAB=30°.
3.P56頁練習(xí)1、2
III課堂小結(jié):1.等腰三角形和性質(zhì);等腰三角形的條件
V布置作業(yè):1.P58頁習(xí)題12.3第ll題.
2.已知等邊△ABC,求平面內(nèi)一點(diǎn)P,滿足A,B,C,P四點(diǎn)中的任意三點(diǎn)連線都構(gòu)成等腰三角形.這樣的點(diǎn)有多少個(gè)?
西工大附中初二數(shù)學(xué)教案3
教學(xué)過程
一、復(fù)習(xí)等腰三角形的判定與性質(zhì)
二、新授:
1.等邊三角形的性質(zhì):三邊相等;三角都是60°;三邊上的中線、高、角平分線相等
2.等邊三角形的判定:
三個(gè)角都相等的三角形是等邊三角形;有一個(gè)角是60°的等腰三角形是等邊三角形;
在直角三角形中,如果一個(gè)銳角等于30°,那么它所對(duì)的直角邊等于斜邊的一半
注意:推論1是判定一個(gè)三角形為等邊三角形的一個(gè)重要方法.推論2說明在等腰三角形中,只要有一個(gè)角是600,不論這個(gè)角是頂角還是底角,就可以判定這個(gè)三角形是等邊三角形。推論3反映的是直角三角形中邊與角之間的關(guān)系.
3.由學(xué)生解答課本148頁的例子;
4.補(bǔ)充:已知如圖所示,在△ABC中,BD是AC邊上的中線,DB⊥BC于B,
∠ABC=120o,求證:AB=2BC
分析由已知條件可得∠ABD=30o,如能構(gòu)造有一個(gè)銳角是30o的直角三角形,斜邊是AB,30o角所對(duì)的邊是與BC相等的線段,問題就得到解決了
西工大附中初二數(shù)學(xué)教案4
教學(xué)目標(biāo)
1、理解并掌握等腰三角形的判定定理及推論
2、能利用其性質(zhì)與判定證明線段或角的相等關(guān)系.
教學(xué)重點(diǎn):等腰三角形的判定定理及推論的運(yùn)用
教學(xué)難點(diǎn):正確區(qū)分等腰三角形的判定與性質(zhì),能夠利用等腰三角形的判定定理證明線段的相等關(guān)系.
教學(xué)過程:
一、復(fù)習(xí)等腰三角形的性質(zhì)
二、新授:
I提出問題,創(chuàng)設(shè)情境
出示投影片.某地質(zhì)專家為估測(cè)一條東西流向河流的寬度,選擇河流北岸上一棵樹(B點(diǎn))為B標(biāo),然后在這棵樹的正南方(南岸A點(diǎn)抽一小旗作標(biāo)志)沿南偏東60°方向走一段距離到C處時(shí),測(cè)得∠ACB為30°,這時(shí),地質(zhì)專家測(cè)得AC的長度就可知河流寬度.
學(xué)生們很想知道,這樣估測(cè)河流寬度的根據(jù)是什么?帶著這個(gè)問題,引導(dǎo)學(xué)生學(xué)習(xí)“等腰三角形的判定”.
II引入新課
1.由性質(zhì)定理的題設(shè)和結(jié)論的變化,引出研究的內(nèi)容——在△ABC中,苦∠B=∠C,則AB=AC嗎?
作一個(gè)兩個(gè)角相等的三角形,然后觀察兩等角所對(duì)的邊有什么關(guān)系?
2.引導(dǎo)學(xué)生根據(jù)圖形,寫出已知、求證.
2、小結(jié),通過論證,這個(gè)命題是真命題,即“等腰三角形的判定定理”(板書定理名稱).
強(qiáng)調(diào)此定理是在一個(gè)三角形中把角的相等關(guān)系轉(zhuǎn)化成邊的相等關(guān)系的重要依據(jù),類似于性質(zhì)定理可簡稱“等角對(duì)等邊”.
4.引導(dǎo)學(xué)生說出引例中地質(zhì)專家的測(cè)量方法的根據(jù).
III例題與練習(xí)
1.如圖2
其中△ABC是等腰三角形的是[]
2.①如圖3,已知△ABC中,AB=AC.∠A=36°,則∠C______(根據(jù)什么?).
②如圖4,已知△ABC中,∠A=36°,∠C=72°,△ABC是______三角形(根據(jù)什么?).
③若已知∠A=36°,∠C=72°,BD平分∠ABC交AC于D,判斷圖5中等腰三角形有______.
④若已知AD=4cm,則BC______cm.
3.以問題形式引出推論l______.
4.以問題形式引出推論2______.
例:如果三角形一個(gè)外角的平分線平行于三角形的一邊,求證這個(gè)三角形是等腰三角形.
分析:引導(dǎo)學(xué)生根據(jù)題意作出圖形,寫出已知、求證,并分析證明.
練習(xí):5.(l)如圖6,在△ABC中,AB=AC,∠ABC、∠ACB的平分線相交于點(diǎn)F,過F作DE//BC,交AB于點(diǎn)D,交AC于E.問圖中哪些三角形是等腰三角形?
(2)上題中,若去掉條件AB=AC,其他條件不變,圖6中還有等腰三角形嗎?
練習(xí):P53練習(xí)1、2、3。
IV課堂小結(jié)
1.判定一個(gè)三角形是等腰三角形有幾種方法?
2.判定一個(gè)三角形是等邊三角形有幾種方法?
3.等腰三角形的性質(zhì)定理與判定定理有何關(guān)系?
4.現(xiàn)在證明線段相等問題,一般應(yīng)從幾方面考慮?
西工大附中初二數(shù)學(xué)教案5
教學(xué)目標(biāo)
1.等腰三角形的概念.2.等腰三角形的性質(zhì).3.等腰三角形的概念及性質(zhì)的應(yīng)用.
教學(xué)重點(diǎn):1.等腰三角形的概念及性質(zhì).2.等腰三角形性質(zhì)的應(yīng)用.
教學(xué)難點(diǎn):等腰三角形三線合一的性質(zhì)的理解及其應(yīng)用.
教學(xué)過程
Ⅰ.提出問題,創(chuàng)設(shè)情境
在前面的學(xué)習(xí)中,我們認(rèn)識(shí)了軸對(duì)稱圖形,探究了軸對(duì)稱的性質(zhì),并且能夠作出一個(gè)簡單平面圖形關(guān)于某一直線的軸對(duì)稱圖形,還能夠通過軸對(duì)稱變換來設(shè)計(jì)一些美麗的圖案.這節(jié)課我們就是從軸對(duì)稱的角度來認(rèn)識(shí)一些我們熟悉的幾何圖形.來研究:①三角形是軸對(duì)稱圖形嗎?②什么樣的三角形是軸對(duì)稱圖形?
有的三角形是軸對(duì)稱圖形,有的三角形不是.
問題:那什么樣的三角形是軸對(duì)稱圖形?
滿足軸對(duì)稱的條件的三角形就是軸對(duì)稱圖形,也就是將三角形沿某一條直線對(duì)折后兩部分能夠完全重合的就是軸對(duì)稱圖形.
我們這節(jié)課就來認(rèn)識(shí)一種成軸對(duì)稱圖形的三角形──等腰三角形.
Ⅱ.導(dǎo)入新課:要求學(xué)生通過自己的思考來做一個(gè)等腰三角形.
作一條直線L,在L上取點(diǎn)A,在L外取點(diǎn)B,作出點(diǎn)B關(guān)于直線L的對(duì)稱點(diǎn)C,連結(jié)AB、BC、CA,則可得到一個(gè)等腰三角形.
等腰三角形的定義:有兩條邊相等的三角形叫做等腰三角形.相等的兩邊叫做腰,另一邊叫做底邊,兩腰所夾的角叫做頂角,底邊與腰的夾角叫底角.同學(xué)們?cè)谧约鹤鞒龅牡妊切沃?,注明它的腰、底邊、頂角和底?
思考:
1.等腰三角形是軸對(duì)稱圖形嗎?請(qǐng)找出它的對(duì)稱軸.
2.等腰三角形的兩底角有什么關(guān)系?
3.頂角的平分線所在的直線是等腰三角形的對(duì)稱軸嗎?
4.底邊上的中線所在的直線是等腰三角形的對(duì)稱軸嗎?底邊上的高所在的直線呢?
結(jié)論:等腰三角形是軸對(duì)稱圖形.它的對(duì)稱軸是頂角的平分線所在的直線.因?yàn)榈妊切蔚膬裳嗟龋园堰@兩條腰重合對(duì)折三角形便知:等腰三角形是軸對(duì)稱圖形,它的對(duì)稱軸是頂角的平分線所在的直線.
要求學(xué)生把自己做的等腰三角形進(jìn)行折疊,找出它的對(duì)稱軸,并看它的兩個(gè)底角有什么關(guān)系.
沿等腰三角形的頂角的平分線對(duì)折,發(fā)現(xiàn)它兩旁的部分互相重合,由此可知這個(gè)等腰三角形的兩個(gè)底角相等,而且還可以知道頂角的平分線既是底邊上的中線,也是底邊上的高.
由此可以得到等腰三角形的性質(zhì):
1.等腰三角形的兩個(gè)底角相等(簡寫成“等邊對(duì)等角”).
2.等腰三角形的頂角平分線,底邊上的中線、底邊上的高互相重合(通常稱作“三線合一”).
由上面折疊的過程獲得啟發(fā),我們可以通過作出等腰三角形的對(duì)稱軸,得到兩個(gè)全等的三角形,從而利用三角形的全等來證明這些性質(zhì).同學(xué)們現(xiàn)在就動(dòng)手來寫出這些證明過程).
如右圖,在△ABC中,AB=AC,作底邊BC的中線AD,因?yàn)?/p>
所以△BAD≌△CAD(SSS).
所以∠B=∠C.
]如右圖,在△ABC中,AB=AC,作頂角∠BAC的角平分線AD,因?yàn)?/p>
所以△BAD≌△CAD.
所以BD=CD,∠BDA=∠CDA=∠BDC=90°.
[例1]如圖,在△ABC中,AB=AC,點(diǎn)D在AC上,且BD=BC=AD,
求:△ABC各角的度數(shù).
分析:根據(jù)等邊對(duì)等角的性質(zhì),我們可以得到
∠A=∠ABD,∠ABC=∠C=∠BDC,
再由∠BDC=∠A+∠ABD,就可得到∠ABC=∠C=∠BDC=2∠A.
再由三角形內(nèi)角和為180°,就可求出△ABC的三個(gè)內(nèi)角.
把∠A設(shè)為x的話,那么∠ABC、∠C都可以用x來表示,這樣過程就更簡捷.
解:因?yàn)锳B=AC,BD=BC=AD,
所以∠ABC=∠C=∠BDC.
∠A=∠ABD(等邊對(duì)等角).
設(shè)∠A=x,則∠BDC=∠A+∠ABD=2x,
從而∠ABC=∠C=∠BDC=2x.
于是在△ABC中,有
∠A+∠ABC+∠C=x+2x+2x=180°,
解得x=36°.在△ABC中,∠A=35°,∠ABC=∠C=72°.
[師]下面我們通過練習(xí)來鞏固這節(jié)課所學(xué)的知識(shí).
Ⅲ.隨堂練習(xí):1.課本P51練習(xí)1、2、3.2.閱讀課本P
49~P51,然后小結(jié).
Ⅳ.課時(shí)小結(jié)
這節(jié)課我們主要探討了等腰三角形的性質(zhì),并對(duì)性質(zhì)作了簡單的應(yīng)用.等腰三角形是軸對(duì)稱圖形,它的兩個(gè)底角相等(等邊對(duì)等角),等腰三角形的對(duì)稱軸是它頂角的平分線,并且它的頂角平分線既是底邊上的中線,又是底邊上的高.
我們通過這節(jié)課的學(xué)習(xí),首先就是要理解并掌握這些性質(zhì),并且能夠靈活應(yīng)用它們.
Ⅴ.作業(yè):課本P56習(xí)題12.3第1、2、3、4題.
板書設(shè)計(jì)
12.3.1.1等腰三角形
一、設(shè)計(jì)方案作出一個(gè)等腰三角形
二、等腰三角形性質(zhì):1.等邊對(duì)等角2.三線合一