中文字幕人妻色偷偷久久_天天鲁一鲁摸一摸爽一爽_最新亚洲人成网站在线观看_999久久久免费精品国产_久久精品丝袜高跟鞋

歡迎訪一網(wǎng)寶!您身邊的知識小幫手,專注做最新的學(xué)習(xí)參考資料!

初二數(shù)學(xué)德育滲透教案

一網(wǎng)寶 分享 時間: 加入收藏 我要投稿 點(diǎn)贊

在學(xué)習(xí)簡單的分式方程的解法時,是將分式方程化為一元一次方程,復(fù)雜的(可化為一元二次方程)分式方程的基本思想也一樣,就是設(shè)法將分式方程"轉(zhuǎn)化"為整式方程.一起看看初二數(shù)學(xué)分式方程教案!歡迎查閱!

初二數(shù)學(xué)分式方程教案1

一,內(nèi)容綜述:

1.解分式方程的基本思想

在學(xué)習(xí)簡單的分式方程的解法時,是將分式方程化為一元一次方程,復(fù)雜的(可化為一元二次方程)分式方程的基本思想也一樣,就是設(shè)法將分式方程"轉(zhuǎn)化"為整式方程.即

分式方程 整式方程

2.解分式方程的基本方法

(1)去分母法

去分母法是解分式方程的一般方法,在方程兩邊同時乘以各分式的最簡公分母,使分式方程轉(zhuǎn)化為整式方程.但要注意,可能會產(chǎn)生增根.所以,必須驗根.

產(chǎn)生增根的原因:

當(dāng)最簡公分母等于0時,這種變形不符合方程的同解原理(方程的兩邊都乘以或除以同一個不等于零的數(shù),所得方程與原方程同解),這時得到的整式方程的解不一定是原方程的解.

檢驗根的方法:

將整式方程得到的解代入原方程進(jìn)行檢驗,看方程左右兩邊是否相等.

為了簡便,可把解得的根直接代入最簡公分母中,如果不使公分母等于0,就是原方程的根;如果使公分母等于0,就是原方程的增根.必須舍去.

注意:增根是所得整式方程的根,但不是原方程的根,增根使原方程的公

分母為0.

用去分母法解分式方程的一般步驟:

(i)去分母,將分式方程轉(zhuǎn)化為整式方程;

(ii)解所得的整式方程;

(iii)驗根做答

(2)換元法

為了解決某些難度較大的代數(shù)問題,可通過添設(shè)輔助元素(或者叫輔助未知數(shù))來解決.輔助元素的添設(shè)是使原來的未知量替換成新的未知量,從而把問題化繁為簡,化難為易,使未知量向已知量轉(zhuǎn)化,這種思維方法就是換元法.換元法是解分式方程的一種常用技巧,利用它可以簡化求解過程.

用換元法解分式方程的一般步驟:

(i)設(shè)輔助未知數(shù),并用含輔助未知數(shù)的代數(shù)式去表示方程中另外的代數(shù)

式;

(ii)解所得到的關(guān)于輔助未知數(shù)的新方程,求出輔助未知數(shù)的值;

(iii)把輔助未知數(shù)的值代回原設(shè)中,求出原未知數(shù)的值;

(iv)檢驗做答.

注意:(1)換元法不是解分式方程的一般方法,它是解一些特殊的分式方程的特殊方法.它的基本思想是用換元法把原方程化簡,把解一個比較復(fù)雜的方程轉(zhuǎn)化為解兩個比較簡單的方程.

(2)分式方程解法的選擇順序是先特殊后一般,即先考慮能否用換元法解,不能用換元法解的,再用去分母法.

(3)無論用什么方法解分式方程,驗根都是必不可少的重要步驟.

初二數(shù)學(xué)分式方程教案2

一、教學(xué)目標(biāo)

1.使學(xué)生掌握可化為一元二次方程的分式方程的解法,能用去分母的方法或換元的方法求此類方程的解,并會驗根.

2.通過本節(jié)課的教學(xué),向?qū)W生滲透“轉(zhuǎn)化”的數(shù)學(xué)思想方法;

3.通過本節(jié)的教學(xué),繼續(xù)向?qū)W生滲透事物是相互聯(lián)系及相互轉(zhuǎn)化的辨證唯物主義觀點(diǎn).

二、重點(diǎn)·難點(diǎn)·疑點(diǎn)及解決辦法

1.教學(xué)重點(diǎn):可化為一元二次方程的分式方程的解法.

2.教學(xué)難點(diǎn):解分式方程,學(xué)生不容易理解為什么必須進(jìn)行檢驗.

3.教學(xué)疑點(diǎn):學(xué)生容易忽視對分式方程的解進(jìn)行檢驗通過對分式方程的解的剖析,進(jìn)一步使學(xué)生認(rèn)識解分式方程必須進(jìn)行檢驗的重要性.

4.解決辦法:(l)分式方程的解法順序是:先特殊、后一般,即能用換元法的方程應(yīng)盡量用換元法解.(2)無論用去分母法解,還是換元法解分式方程,都必須進(jìn)行驗根,驗根是解分式方程必不可少的一個重要步驟.(3)方程的增根具備兩個特點(diǎn),①它是由分式方程所轉(zhuǎn)化成的整式方程的根②它能使原分式方程的公分母為0.

三、教學(xué)步驟

(一)教學(xué)過程

1.復(fù)習(xí)提問

(1)什么叫做分式方程?解可化為一元一次方程的分式方程的方法與步驟是什么?

(2)解可化為一元一次方程的分式方程為什么要檢驗?檢驗的方法是什么?

(3)解方程,并由此方程說明解方程過程中產(chǎn)生增根的原因.

通過(1)、(2)、(3)的準(zhǔn)備,可直接點(diǎn)出本節(jié)的內(nèi)容:可化為一元二次方程的分式方程的解法相同.

在教師點(diǎn)出本節(jié)內(nèi)容的處理方法與以前所學(xué)的知識完全類同后,讓全體學(xué)生對照前面復(fù)習(xí)過的分式方程的解,來進(jìn)一步加深對“類比”法的理解,以便學(xué)生全面地參與到教學(xué)活動中去,全面提高教學(xué)質(zhì)量.

在前面的基礎(chǔ)上,為了加深學(xué)生對新知識的理解,教師與學(xué)生共同分析解決例題,以提高學(xué)生分析問題和解決問題的能力.

2.例題講解

例1 解方程.

分析 對于此方程的解法,不是教師講如何如何解,而是讓學(xué)生對已有知識的回憶,使用原來的方法,去通過試的手段來解決,在學(xué)生敘述過程中,發(fā)現(xiàn)問題并及時糾正.

解:兩邊都乘以,得

去括號,得

整理,得

解這個方程,得

檢驗:把代入,所以是原方程的根.

∴ 原方程的根是.

雖然,此種類型的方程在初二上學(xué)期已學(xué)習(xí)過,但由于相隔時間比較長,所以有一些學(xué)

生容易犯的類型錯誤應(yīng)加以強(qiáng)調(diào),如在第一步中.需強(qiáng)調(diào)方程兩邊同時乘以最簡公分母.另

外,在把分式方程轉(zhuǎn)化為整式方程后,所得的一元二次方程有兩個相等的實(shí)數(shù)根,由于是解

分式方程,所以在下結(jié)論時,應(yīng)強(qiáng)調(diào)取一即可,這一點(diǎn),教師應(yīng)給以強(qiáng)調(diào).

例2 解方程

分析:解此方程的關(guān)鍵是如何將分式方程轉(zhuǎn)化為整式方程,而轉(zhuǎn)化為整式方程的關(guān)鍵是

正確地確定出方程中各分母的最簡公分母,由于此方程中的分母并非均按的降冪排列,所

以將方程的分母作一轉(zhuǎn)化,化為按字母終行降暴排列,并對可進(jìn)行分解的分母進(jìn)行分解,從而確定出最簡公分母.

解:方程兩邊都乘以,約去分母,得

整理后,得

解這個方程,得

檢驗:把代入,它不等于0,所以是原方程的根,把

代入它等于0,所以是增根.

∴ 原方程的根是

師生共同解決例1、例2后,教師引導(dǎo)學(xué)生與已學(xué)過的知識進(jìn)行比較.

例3 解方程.

分析:此題也可像前面例l、例2一樣通過去分母解決,學(xué)生可以試,但由于轉(zhuǎn)化后為一元四次方程,解起來難度很大,因此應(yīng)尋求簡便方式,通過引導(dǎo)學(xué)生仔細(xì)觀察發(fā)現(xiàn),方程中含有未知數(shù)的部分 和互為倒數(shù),由此可設(shè) ,則可通過換元法來解題,通過求出

y后,再求原方程的未知數(shù)的值.

解:設(shè),那么,于是原方程變形為

兩邊都乘以y,得

解得

.

當(dāng)時,,去分母,得

解得;

當(dāng)時,,去分母整理,得

,

檢驗:把分別代入原方程的分母,各分母均不等于0.

∴ 原方程的根是

,.

此題在解題過程中,經(jīng)過兩次“轉(zhuǎn)化”,所以在檢驗中,把所得的未知數(shù)的值代入原方程中的分母進(jìn)行檢驗.

鞏固練習(xí):教材P49中1、2引導(dǎo)學(xué)筆答.

(二)總結(jié)、擴(kuò)展

對于小結(jié),教師應(yīng)引導(dǎo)學(xué)生做出.

本節(jié)內(nèi)容的小結(jié)應(yīng)從所學(xué)習(xí)的知識內(nèi)容、所學(xué)知識采用了什么數(shù)學(xué)思想及教學(xué)方法兩方面進(jìn)行.

本節(jié)我們通過類比的方法,在已有的解可化為一元一次方程的分式方程的基礎(chǔ)上,學(xué)習(xí)了可化為一元二次方程的分式方程的解法,在具體方程的解法上,適用了“轉(zhuǎn)化”與“換元”的基本數(shù)學(xué)思想與基本數(shù)學(xué)方法.

此小結(jié)的目的,使學(xué)生能利用“類比”的方法,使學(xué)過的知識系統(tǒng)化、網(wǎng)絡(luò)化,形成認(rèn)知結(jié)構(gòu),便于學(xué)生掌握.

四、布置作業(yè)

1.教材P50中A1、2、3.

2.教材P51中B1、2

五、板書設(shè)計

探究活動1

解方程:

分析:若去分母,則會變?yōu)楦叽畏匠?,這樣解起來,比較繁,注意到分母中都有,可用換元法降次

設(shè),則原方程變?yōu)?/p>

∴或無解

經(jīng)檢驗:是原方程的解

探究活動2

有農(nóng)藥一桶,倒出8升后,用水補(bǔ)滿,然后又倒出4升,再用水補(bǔ)滿,此時農(nóng)藥與水的比為18:7,求桶的容積.

解:設(shè)桶的容積為 升,第一次用水補(bǔ)滿后,濃度為 ,第二次倒出的農(nóng)藥數(shù)為4. 升,兩次共倒出的農(nóng)藥總量(8+4· )占原來農(nóng)藥 ,故

整理,

(舍去)

答:桶的容積為40升.

初二數(shù)學(xué)分式方程教案3

教學(xué)目標(biāo)

1.知識與技能

能應(yīng)用所學(xué)的函數(shù)知識解決現(xiàn)實(shí)生活中的問題,會建構(gòu)函數(shù)“模型”.

2.過程與方法

經(jīng)歷探索一次函數(shù)的應(yīng)用問題,發(fā)展抽象思維.

3.情感、態(tài)度與價值觀

培養(yǎng)變量與對應(yīng)的思想,形成良好的函數(shù)觀點(diǎn),體會一次函數(shù)的應(yīng)用價值.

重、難點(diǎn)與關(guān)鍵

1.重點(diǎn):一次函數(shù)的應(yīng)用.

2.難點(diǎn):一次函數(shù)的應(yīng)用.

3.關(guān)鍵:從數(shù)形結(jié)合分析思路入手,提升應(yīng)用思維.

教學(xué)方法

采用“講練結(jié)合”的教學(xué)方法,讓學(xué)生逐步地熟悉一次函數(shù)的應(yīng)用.

教學(xué)過程

一、范例點(diǎn)擊,應(yīng)用所學(xué)

【例5】小芳以200米/分的速度起跑后,先勻加速跑5分,每分提高速度20米/分,又勻速跑10分,試寫出這段時間里她的跑步速度y(單位:米/分)隨跑步時間x(單位:分)變化的函數(shù)關(guān)系式,并畫出函數(shù)圖象.

y=

【例6】A城有肥料200噸,B城有肥料300噸,現(xiàn)要把這些肥料全部運(yùn)往C、D兩鄉(xiāng).從A城往C、D兩鄉(xiāng)運(yùn)肥料的費(fèi)用分別為每噸20元和25元;從B城往C、D兩鄉(xiāng)運(yùn)肥料的費(fèi)用分別為每噸15元和24元,現(xiàn)C鄉(xiāng)需要肥料240噸,D鄉(xiāng)需要肥料260噸,怎樣調(diào)運(yùn)總運(yùn)費(fèi)最少?

解:設(shè)總運(yùn)費(fèi)為y元,A城往運(yùn)C鄉(xiāng)的肥料量為x噸,則運(yùn)往D鄉(xiāng)的肥料量為(200-x)噸.B城運(yùn)往C、D鄉(xiāng)的肥料量分別為(240-x)噸與(60+x)噸.y與x的關(guān)系式為:y=20x+25(200-x)+15(240-x)+24(60+x),即y=4x+10040(0≤x≤200).

由圖象可看出:當(dāng)x=0時,y有最小值10040,因此,從A城運(yùn)往C鄉(xiāng)0噸,運(yùn)往D鄉(xiāng)200噸;從B城運(yùn)往C鄉(xiāng)240噸,運(yùn)往D鄉(xiāng)60噸,此時總運(yùn)費(fèi)最少,總運(yùn)費(fèi)最小值為10040元.

拓展:若A城有肥料300噸,B城有肥料200噸,其他條件不變,又應(yīng)怎樣調(diào)運(yùn)?

二、隨堂練習(xí),鞏固深化

課本P119練習(xí).

三、課堂總結(jié),發(fā)展?jié)撃?/p>

由學(xué)生自我評價本節(jié)課的表現(xiàn).

四、布置作業(yè),專題突破

課本P120習(xí)題14.2第9,10,11題.

板書設(shè)計

14.2.2一次函數(shù)(4)

1、一次函數(shù)的應(yīng)用例:


精選圖文

221381
領(lǐng)取福利

微信掃碼領(lǐng)取福利

微信掃碼分享

Z范文網(wǎng)范文協(xié)會網(wǎng)、范文檔案館