中文字幕人妻色偷偷久久_天天鲁一鲁摸一摸爽一爽_最新亚洲人成网站在线观看_999久久久免费精品国产_久久精品丝袜高跟鞋

歡迎訪一網(wǎng)寶!您身邊的知識(shí)小幫手,專注做最新的學(xué)習(xí)參考資料!

初二上的數(shù)學(xué)教案

一網(wǎng)寶 分享 時(shí)間: 加入收藏 我要投稿 點(diǎn)贊

知道什么是全等形、全等三角形及全等三角形的對(duì)應(yīng)元素;一起看看初二上三角形教案!歡迎查閱!

初二上三角形教案1

教學(xué)目標(biāo):

1、知識(shí)目標(biāo):

(1)知道什么是全等形、全等三角形及全等三角形的對(duì)應(yīng)元素;

(2)知道全等三角形的性質(zhì),能用符號(hào)正確地表示兩個(gè)三角形全等;

(3)能熟練找出兩個(gè)全等三角形的對(duì)應(yīng)角、對(duì)應(yīng)邊。

2、能力目標(biāo):

(1)通過(guò)全等三角形角有關(guān)概念的學(xué)習(xí),提高學(xué)生數(shù)學(xué)概念的辨析能力;

(2)通過(guò)找出全等三角形的對(duì)應(yīng)元素,培養(yǎng)學(xué)生的識(shí)圖能力。

3、情感目標(biāo):

(1)通過(guò)感受全等三角形的對(duì)應(yīng)美激發(fā)學(xué)生熱愛(ài)科學(xué)勇于探索的精神;

(2)通過(guò)自主學(xué)習(xí)的發(fā)展體驗(yàn)獲取數(shù)學(xué)知識(shí)的感受,培養(yǎng)學(xué)生勇于創(chuàng)新,多方位審視問(wèn)題的創(chuàng)造技巧。

教學(xué)重點(diǎn):全等三角形的性質(zhì)。

教學(xué)難點(diǎn):找全等三角形的對(duì)應(yīng)邊、對(duì)應(yīng)角

教學(xué)用具:直尺、微機(jī)

教學(xué)方法:自學(xué)輔導(dǎo)式

教學(xué)過(guò)程:

1、全等形及全等三角形概念的引入

(1)動(dòng)畫(huà)(幾何畫(huà)板)顯示:

問(wèn)題:你能發(fā)現(xiàn)這兩個(gè)三角形有什么美妙的關(guān)系嗎?

一般學(xué)生都能發(fā)現(xiàn)這兩個(gè)三角形是完全重合的。

(2)學(xué)生自己動(dòng)手

畫(huà)一個(gè)三角形:邊長(zhǎng)為4cm,5cm,7cm.然后剪下來(lái),同桌的兩位同學(xué)配合,把兩個(gè)三角形放在一起重合。

(3)獲取概念

讓學(xué)生用自己的語(yǔ)言敘述:

全等三角形、對(duì)應(yīng)頂點(diǎn)、對(duì)應(yīng)角以及有關(guān)數(shù)學(xué)符號(hào)。

2、全等三角形性質(zhì)的發(fā)現(xiàn):

(1)電腦動(dòng)畫(huà)顯示:

問(wèn)題:對(duì)應(yīng)邊、對(duì)應(yīng)角有何關(guān)系?

由學(xué)生觀察動(dòng)畫(huà)發(fā)現(xiàn),兩個(gè)三角形的三組對(duì)應(yīng)邊相等、三組對(duì)應(yīng)角相等。

3、 找對(duì)應(yīng)邊、對(duì)應(yīng)角以及全等三角形性質(zhì)的應(yīng)用

(1) 投影顯示題目:

D、AD∥BC,且AD=BC

分析:由于兩個(gè)三角形完全重合,故面積、周長(zhǎng)相等。至于D,因?yàn)锳D和BC是對(duì)應(yīng)邊,因此AD=BC。C符合題意。

說(shuō)明:本題的解題關(guān)鍵是要知道中兩個(gè)全等三角形中,對(duì)應(yīng)頂點(diǎn)定在對(duì)應(yīng)的位置上,易錯(cuò)點(diǎn)是容易找錯(cuò)對(duì)應(yīng)角。

分析:對(duì)應(yīng)邊和對(duì)應(yīng)角只能從兩個(gè)三角形中找,所以需將從復(fù)雜的圖形中分離出來(lái)

說(shuō)明:根據(jù)位置元素來(lái)找:有相等元素,其即為對(duì)應(yīng)元素:

然后依據(jù)已知的對(duì)應(yīng)元素找:(1)全等三角形對(duì)應(yīng)角所對(duì)的邊是對(duì)應(yīng)邊,兩個(gè)對(duì)應(yīng)角所夾的邊是對(duì)應(yīng)邊(2)全等三角形對(duì)應(yīng)邊所對(duì)的角是對(duì)應(yīng)角,兩條對(duì)應(yīng)邊所夾的角是對(duì)應(yīng)角。

說(shuō)明:利用“運(yùn)動(dòng)法”來(lái)找

翻折法:找到中心線經(jīng)此翻折后能互相重合的兩個(gè)三角形,易發(fā)現(xiàn)其對(duì)應(yīng)元素

旋轉(zhuǎn)法:兩個(gè)三角形繞某一定點(diǎn)旋轉(zhuǎn)一定角度能夠重合時(shí),易于找到對(duì)應(yīng)元素

平移法:將兩個(gè)三角形沿某一直線推移能重合時(shí)也可找到對(duì)應(yīng)元素

求證:AE∥CF

分析:證明直線平行通常用角關(guān)系(同位角、內(nèi)錯(cuò)角等),為此想到三角形全等后的性質(zhì)――對(duì)應(yīng)角相等

∴AE∥CF

說(shuō)明:解此題的關(guān)鍵是找準(zhǔn)對(duì)應(yīng)角,可以用平移法。

分析:AB不是全等三角形的對(duì)應(yīng)邊,

但它通過(guò)對(duì)應(yīng)邊轉(zhuǎn)化為AB=CD,而使AB+CD=AD-BC

可利用已知的AD與BC求得。

說(shuō)明:解決本題的關(guān)鍵是利用三角形全等的性質(zhì),得到對(duì)應(yīng)邊相等。

(2)題目的解決

這些題目給出以后,先要求學(xué)生獨(dú)立思考后回答,其它學(xué)生補(bǔ)充完善,并可以提出自己的看法。教師重點(diǎn)指導(dǎo),師生共同總結(jié):找對(duì)應(yīng)邊、對(duì)應(yīng)角通常的幾種方法:

投影顯示:

(1)全等三角形對(duì)應(yīng)角所對(duì)的邊是對(duì)應(yīng)邊,兩個(gè)對(duì)應(yīng)角所夾的邊是對(duì)應(yīng)邊;

(2)全等三角形對(duì)應(yīng)邊所對(duì)的角是對(duì)應(yīng)角,兩條對(duì)應(yīng)邊所夾的角是對(duì)應(yīng)角;

(3)有公共邊的,公共邊一定是對(duì)應(yīng)邊;

(4)有公共角的,角一定是對(duì)應(yīng)角;

(5)有對(duì)頂角的,對(duì)頂角一定是對(duì)應(yīng)角;

兩個(gè)全等三角形中一對(duì)最長(zhǎng)邊(或角)是對(duì)應(yīng)邊(或?qū)?yīng)角),一對(duì)最短邊(或最小的角)是對(duì)應(yīng)邊(或?qū)?yīng)角)

4、課堂獨(dú)立練習(xí),鞏固提高

此練習(xí),主要加強(qiáng)學(xué)生的識(shí)圖能力,同時(shí),找準(zhǔn)全等三角形的對(duì)應(yīng)邊、對(duì)應(yīng)角,是以后學(xué)好幾何的關(guān)鍵。

5、小結(jié):

(1)如何找全等三角形的對(duì)應(yīng)邊、對(duì)應(yīng)角(基本方法)

(2)全等三角形的性質(zhì)

(3)性質(zhì)的應(yīng)用

讓學(xué)生自由表述,其它學(xué)生補(bǔ)充,自己將知識(shí)系統(tǒng)化,以自己的方式進(jìn)行建構(gòu)。

6、布置作業(yè)

a.書(shū)面作業(yè)P55#2、3、4

b.上交作業(yè)(中考題)

初二上三角形教案2

一、教材分析:勾股定理是學(xué)生在已經(jīng)掌握了直角三角形的有關(guān)性質(zhì)的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,它是直角三角形的一條非常重要的性質(zhì),是幾何中最重要的定理之一,它揭示了一個(gè)三角形三條邊之間的數(shù)量關(guān)系,它可以解決直角三角形中的計(jì)算問(wèn)題,是解直角三角形的主要根據(jù)之一,在實(shí)際生活中用途很大。

教材在編寫(xiě)時(shí)注意培養(yǎng)學(xué)生的動(dòng)手操作能力和分析問(wèn)題的能力,通過(guò)實(shí)際分析、拼圖等活動(dòng),使學(xué)生獲得較為直觀的印象;通過(guò)聯(lián)系和比較,理解勾股定理,以利于正確的進(jìn)行運(yùn)用。

據(jù)此,制定教學(xué)目標(biāo)如下:1、理解并掌握勾股定理及其證明。2、能夠靈活地運(yùn)用勾股定理及其計(jì)算。3、培養(yǎng)學(xué)生觀察、比較、分析、推理的能力。4、通過(guò)介紹中國(guó)古代勾股方面的成就,激發(fā)學(xué)生熱愛(ài)祖國(guó)與熱愛(ài)祖國(guó)悠久文化的思想感情,培養(yǎng)他們的民族自豪感和鉆研精神。

二、教學(xué)重點(diǎn):勾股定理的證明和應(yīng)用。

三、 教學(xué)難點(diǎn):勾股定理的證明。

四、教法和學(xué)法: 教法和學(xué)法是體現(xiàn)在整個(gè)教學(xué)過(guò)程中的,本課的教法和學(xué)法體現(xiàn)如下特點(diǎn):以自學(xué)輔導(dǎo)為主,充分發(fā)揮教師的主導(dǎo)作用,運(yùn)用各種手段激發(fā)學(xué)生學(xué)習(xí)欲望和興趣,組織學(xué)生活動(dòng),讓學(xué)生主動(dòng)參與學(xué)習(xí)全過(guò)程。

切實(shí)體現(xiàn)學(xué)生的主體地位,讓學(xué)生通過(guò)觀察、分析、討論、操作、歸納,理解定理,提高學(xué)生動(dòng)手操作能力,以及分析問(wèn)題和解決問(wèn)題的能力。

通過(guò)演示實(shí)物,引導(dǎo)學(xué)生觀察、操作、分析、證明,使學(xué)生得到獲得新知的成功感受,從而激發(fā)學(xué)生鉆研新知的欲望。

五、教學(xué)程序:本節(jié)內(nèi)容的教學(xué)主要體現(xiàn)在學(xué)生動(dòng)手、動(dòng)腦方面,根據(jù)學(xué)生的認(rèn)知規(guī)律和學(xué)習(xí)心理,教學(xué)程序設(shè)計(jì)如下:

(一)創(chuàng)設(shè)情境 以古引新

1、由故事引入,3000多年前有個(gè)叫商高的人對(duì)周公說(shuō),把一根直尺折成直角,兩端連接得到一個(gè)直角三角形,如果勾是3,股是4,那么弦等于5。這樣引起學(xué)生學(xué)習(xí)興趣,激發(fā)學(xué)生求知欲。

2、是不是所有的直角三角形都有這個(gè)性質(zhì)呢?教師要善于激疑,使學(xué)生進(jìn)入樂(lè)學(xué)狀態(tài)。

3、板書(shū)課題,出示學(xué)習(xí)目標(biāo)。(二)初步感知 理解教材

教師指導(dǎo)學(xué)生自學(xué)教材,通過(guò)自學(xué)感悟理解新知,體現(xiàn)了學(xué)生的自主學(xué)習(xí)意識(shí),鍛煉學(xué)生主動(dòng)探究知識(shí),養(yǎng)成良好的自學(xué)習(xí)慣。

(三)質(zhì)疑解難 討論歸納:1、教師設(shè)疑或?qū)W生提疑。如:怎樣證明勾股定理?學(xué)生通過(guò)自學(xué),中等以上的學(xué)生基本掌握,這時(shí)能激發(fā)學(xué)生的表現(xiàn)欲。2、教師引導(dǎo)學(xué)生按照要求進(jìn)行拼圖,觀察并分析;(1)這兩個(gè)圖形有什么特點(diǎn)?(2)你能寫(xiě)出這兩個(gè)圖形的面積嗎?

(3)如何運(yùn)用勾股定理?是否還有其他形式?

這時(shí)教師組織學(xué)生分組討論,調(diào)動(dòng)全體學(xué)生的積極性,達(dá)到人人參與的效果,接著全班交流。先有某一組代表發(fā)言,說(shuō)明本組對(duì)問(wèn)題的理解程度,其他各組作評(píng)價(jià)和補(bǔ)充。教師及時(shí)進(jìn)行富有啟發(fā)性的點(diǎn)撥,最后,師生共同歸納,形成一致意見(jiàn),最終解決疑難。

(四)鞏固練習(xí) 強(qiáng)化提高

1、出示練習(xí),學(xué)生分組解答,并由學(xué)生總結(jié)解題規(guī)律。課堂教學(xué)中動(dòng)靜結(jié)合,以免引起學(xué)生的疲勞。

2、出示例1學(xué)生試解,師生共同評(píng)價(jià),以加深對(duì)例題的理解與運(yùn)用。針對(duì)例題再次出現(xiàn)鞏固練習(xí),進(jìn)一步提高學(xué)生運(yùn)用知識(shí)的能力,對(duì)練習(xí)中出現(xiàn)的情況可采取互評(píng)、互議的形式,在互評(píng)互議中出現(xiàn)的具有代表性的問(wèn)題,教師可以采取全班討論的形式予以解決,以此突出教學(xué)重點(diǎn)。

(五)歸納總結(jié) 練習(xí)反饋

引導(dǎo)學(xué)生對(duì)知識(shí)要點(diǎn)進(jìn)行總結(jié),梳理學(xué)習(xí)思路。分發(fā)自我反饋練習(xí),學(xué)生獨(dú)立完成。

本課意在創(chuàng)設(shè)愉悅和諧的樂(lè)學(xué)氣氛,優(yōu)化教學(xué)手段,借助多媒體提高課堂教學(xué)效率,建立平等、民主、和諧的師生關(guān)系。加強(qiáng)師生間的合作,營(yíng)造一種學(xué)生敢想、感說(shuō)、感問(wèn)的課堂氣氛,讓全體學(xué)生都能生動(dòng)活潑、積極主動(dòng)地教學(xué)活動(dòng),在學(xué)習(xí)中創(chuàng)新精神和實(shí)踐能力得到培養(yǎng)。

初二上三角形教案3

(一)創(chuàng)設(shè)情境 導(dǎo)入新課

不利用工具,請(qǐng)你將一張用紙片做的角分成兩個(gè)相等的角。你有什么辦法?

如果前面活動(dòng)中的紙片換成木板、鋼板等沒(méi)法折的角,又該怎么辦呢?

設(shè)計(jì)目的:能聚攏學(xué)生的思維為新課的開(kāi)展創(chuàng)造了良好的教學(xué)氛圍。

(二)合作交流 探究新知

(活動(dòng)一)探究角平分儀的原理。具體過(guò)程如下:

播放奧巴馬訪問(wèn)我國(guó)的錄像資料------引出雨傘-----觀察它的截面圖,使學(xué)生認(rèn)清其 中的邊角關(guān)系-----引出角平分線;并且運(yùn)用幾何畫(huà)板對(duì)傘的開(kāi)合進(jìn)行動(dòng)態(tài)演示,讓學(xué)生直觀感受傘面形成的角與主桿的關(guān)系-----讓學(xué)生設(shè)計(jì)制作角平分儀;并利用以前所學(xué)的知識(shí)尋找理論上的依據(jù),說(shuō)明這個(gè)儀器的制作原理。

設(shè)計(jì)目的:用生活中的實(shí)例感知。以最近大事作引入點(diǎn),以最常見(jiàn)的事物為載體,讓學(xué)生感受到生活中處處都有數(shù)學(xué),認(rèn)識(shí)到數(shù)學(xué)的價(jià)值。其中設(shè)計(jì)制作角平分儀,可培養(yǎng)學(xué)生的創(chuàng)造力和成就感以及學(xué)習(xí)數(shù)學(xué)的興趣。使學(xué)生很輕松的完成活動(dòng)二。

(活動(dòng)二)通過(guò)上述探究,能否總結(jié)出尺規(guī)作已知角的平分線的一般方法.自己動(dòng)手做做看.然后與同伴交流操作心得.

分小組完成這項(xiàng)活動(dòng),教師可參與到學(xué)生活動(dòng)中,及時(shí)發(fā)現(xiàn)問(wèn)題,給予啟發(fā)和指導(dǎo),使講評(píng)更具有針對(duì)性。

討論結(jié)果展示: 教師根據(jù)學(xué)生的敘述,利用多媒體課件演示作已知角的平分線的方法:

已知:∠AO B.

求作:∠AOB的平分線.

作法:

(1)以O(shè)為圓心,適當(dāng)長(zhǎng)為半徑作弧,分別交OA、OB于M、N.

(2)分別以M、N為圓心,大于1/2MN的長(zhǎng)為半徑作弧.兩弧在∠AOB內(nèi)部交于點(diǎn)C.

(3)作射線OC,射線OC即為所求.

設(shè)計(jì)目的:使學(xué)生能更直觀地理解畫(huà)法,提高學(xué)習(xí)數(shù)學(xué)的興趣。

議一議:

1.在上面作法的第二步中,去掉“大于 MN的長(zhǎng)”這個(gè)條件行嗎?

2.第二步中所作的兩弧交點(diǎn)一定在∠AOB的內(nèi)部嗎?

設(shè)計(jì)這兩個(gè)問(wèn)題的目的在于加深對(duì)角的平分線的作法的理解,培養(yǎng)數(shù)學(xué)嚴(yán)密性的良好學(xué)習(xí)習(xí)慣。

學(xué)生討論結(jié)果總結(jié):

1.去掉“大于 MN的長(zhǎng)”這個(gè)條件,所作的兩弧可能沒(méi)有交點(diǎn),所以就找不到角的平分線.

2.若分別以M、N為圓心,大于 MN的長(zhǎng)為半徑畫(huà)兩弧,兩弧的交點(diǎn)可能在∠AOB的內(nèi)部,也可能在∠AOB的外部,而我們要找的是∠AOB內(nèi)部的交點(diǎn),否則兩弧交點(diǎn)與頂點(diǎn)連線得到的射線就不是∠AOB的平分線了.

3.角的平分線是一條射線.它不是線段,也不是直線,所以第二步中的兩個(gè)限制缺一不可.

4.這種作法的可行性可以通過(guò)全等三角形來(lái)證明.

(活動(dòng)三)探究角平分線的性質(zhì)

思考:已知一角及其角平分線添加輔助線構(gòu)成全等三角形;構(gòu)成全等的直角三角形。這樣的三角形有多少對(duì)?

這樣設(shè)計(jì)的目的是加深對(duì)全等的認(rèn)識(shí)

初二上三角形教案4

1、教材分析

(1)知識(shí)結(jié)構(gòu)

(2)重點(diǎn)、難點(diǎn)分析

本節(jié)內(nèi)容的重點(diǎn)是三角形三邊關(guān)系定理及推論.這個(gè)定理與推論不僅給出了三角形的三邊之間的大小關(guān)系,更重要的是提供了判斷三條線段能否組成三角形的標(biāo)準(zhǔn);熟練靈活地運(yùn)用三角形的兩邊之和大于第三邊,是數(shù)學(xué)嚴(yán)謹(jǐn)性的一個(gè)體現(xiàn);同時(shí)也有助于提高學(xué)生全面思考數(shù)學(xué)問(wèn)題的能力;它還將在以后的學(xué)習(xí)中起著重要作用.

本節(jié)內(nèi)容的難點(diǎn)一是三角形按邊分類,很多學(xué)生常常把等腰三角形與等邊三角形看成獨(dú)立的兩類,而在解題中產(chǎn)生錯(cuò)誤.二是利用三角形三邊之間的關(guān)系解題,在學(xué)習(xí)和應(yīng)用這個(gè)定理時(shí),“兩邊之和大于第三邊”指的是“任何兩邊的和”都“大于第三邊”而學(xué)生的錯(cuò)誤就在于以偏概全;分類討論在解題中也是學(xué)生感到困難的一個(gè)地方.

2、教法建議

沒(méi)有學(xué)生參與的教學(xué)是不成功的教學(xué),教師為了充分調(diào)動(dòng)主體參與,必須在為學(xué)生提供必要的背景知識(shí)的前提下,與學(xué)生一道探索定理在結(jié)構(gòu)上、應(yīng)用上留給我們的啟示.具體說(shuō)明如下:

(1)強(qiáng)化能力

新課引入,先讓學(xué)生閱讀教材第一部分,然后通過(guò)回答教師設(shè)計(jì)的幾個(gè)問(wèn)題,使學(xué)生明確對(duì)三角形按邊分類,做到不重不漏,其中等腰三角形包括等邊三角形,反過(guò)來(lái)等邊三角形是等腰三角形的一種特例.

通過(guò)閱讀,使學(xué)生初步認(rèn)識(shí)數(shù)學(xué)概念的含義,發(fā)現(xiàn)疑難;理解領(lǐng)會(huì)數(shù)學(xué)語(yǔ)言(文字語(yǔ)言、符號(hào)語(yǔ)言、圖形語(yǔ)言),促進(jìn)數(shù)學(xué)語(yǔ)言內(nèi)化,從而提高學(xué)生的數(shù)學(xué)語(yǔ)言水平、自學(xué)能力及交流能力

(2)主動(dòng)獲取

在得出三角形三條邊關(guān)系定理過(guò)程中,針對(duì)基礎(chǔ)比較好的學(xué)生,讓學(xué)生考慮回憶第

一冊(cè)第一章中學(xué)過(guò)的這條公理并給出證明,在這個(gè)基礎(chǔ)上,讓學(xué)生把定理的內(nèi)容敘述出來(lái).(3)激蕩思維

由定理獲得了:判斷三條線段構(gòu)成一個(gè)三角形的一種方法,除了這一種方法外,是否還有其它的判斷方法呢?從而激蕩起學(xué)生思維浪花:方法是什么呢?學(xué)生最初可能很快得到“推論”,此時(shí)瓜熟蒂落,順理成章地引出教材中的推論.在此基礎(chǔ)上,讓學(xué)生通過(guò)討論,簡(jiǎn)化上述兩種方法,由此得到下面兩種方法.這里,學(xué)生若感到困難,教師可適當(dāng)做提示.方法3:已知線段 , ( ),若第三條線段c滿足 - c則線段 , ,c可組成一個(gè)三角形.教學(xué)中采用這種教學(xué)方法可培養(yǎng)學(xué)生分析問(wèn)題探索問(wèn)題的能力,提高學(xué)生對(duì)數(shù)學(xué)知識(shí)結(jié)構(gòu)完整性的認(rèn)識(shí).

(4)加深理解

進(jìn)行必要的例題講解和適當(dāng)?shù)慕忸}練習(xí),以達(dá)到熟練地運(yùn)用定理及推論.從過(guò)程中讓學(xué)生體味到數(shù)學(xué)造化之神奇.也可適當(dāng)指出,此定理及推論不僅提供了判定三條線段是否構(gòu)成三角形的根據(jù),也為今后解決字母取值范圍問(wèn)題提供了有利的依據(jù).

整個(gè)教學(xué)過(guò)程,是學(xué)生主動(dòng)參與,教師及時(shí)點(diǎn)撥,學(xué)生積極探索的過(guò)程,教學(xué)過(guò)程跌宕起伏,問(wèn)題逐步深化,學(xué)生思維逐步擴(kuò)展,使學(xué)生在愉快、主動(dòng)中得到發(fā)展.

教學(xué)目標(biāo):

(1)掌握三角形三邊關(guān)系定理及其推論,會(huì)根據(jù)三條線段的長(zhǎng)度判斷他們能否構(gòu)成三角形;

(2)弄清三角形按邊的相等關(guān)系的分類;

(3)通過(guò)三角形的分類學(xué)習(xí),使學(xué)生知道分類的基本思想,提高學(xué)生歸納概括的能力;

(4)通過(guò)三角形三邊關(guān)系定理的學(xué)習(xí),培養(yǎng)學(xué)生轉(zhuǎn)化的能力;

(5)通過(guò)等邊三角形是等腰三角形的特例,滲透一般與特殊的辯證關(guān)系.

教學(xué)重點(diǎn):三角形三邊關(guān)系定理及推論

教學(xué)難點(diǎn):三角形按邊分類及利用三角形三邊關(guān)系解題

教學(xué)用具:直尺、微機(jī)

教學(xué)方法:談話、探究式

教學(xué)過(guò)程:

1、閱讀新課,回答問(wèn)題

先讓學(xué)生閱讀教材的第一部分,然后回答下列問(wèn)題:

(1)這一部分教材中的數(shù)學(xué)概念有哪些?(指出來(lái)并給予解釋)

(2)等腰三角形與等邊三角形有什么關(guān)系?

估計(jì)有的學(xué)生可能把等腰三角形和等邊三角形看成獨(dú)立的兩類.

(3)寫(xiě)出三角形按邊的相等關(guān)系分類的情況.

教師最后板書(shū)給出.

(要求學(xué)生之間可互相補(bǔ)充,從一開(kāi)始就鼓勵(lì)雙邊交流與多邊交流)

2、發(fā)現(xiàn)并推導(dǎo)出三邊關(guān)系定理

問(wèn)題1:用長(zhǎng)度為4cm、 10cm 、16cm的線繩(課前準(zhǔn)備好的)能否搭建一個(gè)三角形?(讓學(xué)生動(dòng)手操作)

問(wèn)題2:你能解釋上述結(jié)果的原因嗎?

問(wèn)題3:任何三條線段都能組成一個(gè)三角形嗎?滿足什么條件時(shí),三條線段可組成一個(gè)三角形?

定理:三角形兩邊的和大于第三邊

(發(fā)現(xiàn)過(guò)程采用小步子原則,讓學(xué)生在不知不覺(jué)中發(fā)現(xiàn)數(shù)學(xué)中的真理)

3、導(dǎo)出三邊關(guān)系定理的推論及其它兩種方法

由前面得到了判斷所給三條線段能否組成三角形的一個(gè)依據(jù).那么是否還有其它方法呢?請(qǐng)同學(xué)們?cè)诙ɡ淼幕A(chǔ)上來(lái)找:

估計(jì)學(xué)生很容易得到推論,讓學(xué)生用自己的語(yǔ)言敘述,教師稍加整理后給出規(guī)范敘述.

推論:三角形兩邊的差小于第三邊

(給每一個(gè)學(xué)生表現(xiàn)個(gè)人數(shù)學(xué)語(yǔ)言表達(dá)才能的機(jī)會(huì))

能否簡(jiǎn)化上面定理及推論?從而得到如下兩種判定方法:

(1)、已知線段 , ( ),若第三條線段c滿足 - c則線段 , ,c可組成一個(gè)三角形.

4、三角形三邊關(guān)系定理及推論的應(yīng)用

例1 判斷題:(出示投影)

(1)等邊三角形是等腰三角形

(2)三角形可分為不等邊三角形、等腰三角形和等邊三角形

(3)已知三線段 滿足 ,那么 為邊可構(gòu)成三角形

(4)等腰三角形的腰比底長(zhǎng)

(本例主要考察學(xué)生對(duì)概念、定理及推論的理解程度,不要求做在本上,只需口答即可)

(本例要求學(xué)生說(shuō)出解題思路,教師點(diǎn)到為止)

例3 一個(gè)等腰三角形的周長(zhǎng)為18 .

(1) 已知腰長(zhǎng)是底邊長(zhǎng)的2倍,求各邊長(zhǎng).

(2) 其中一邊長(zhǎng)4 ,求其他兩邊長(zhǎng).

這是一道有課堂練習(xí)性質(zhì)的例題,允許學(xué)生有3分鐘左右的獨(dú)立思考,允許想出來(lái)的同學(xué)表達(dá)自己的想法,其它同學(xué)補(bǔ)充完善.

(數(shù)學(xué)教師的課堂教學(xué)應(yīng)該是敢于放手,盡可能多地給學(xué)生創(chuàng)造展示自己的思維空間和時(shí)間)

例4 草原上有4口油井,位于四邊形ABCD的4個(gè)頂點(diǎn),

如圖1現(xiàn)在要建一個(gè)維修站H,試問(wèn)H建在何處,

才能使它到4口油井的距離HA+HB+HC+HD為最小,

說(shuō)明理由.

本例有一定的難度,給出的方法是解決此類型問(wèn)題常見(jiàn)的極為簡(jiǎn)捷的方法,略微構(gòu)造就可以使用三角形三邊關(guān)系定理得出答案.

5、小結(jié)

本節(jié)課我們學(xué)習(xí)了三角形三邊關(guān)系的定理和推論,還知道了定理和推論的一系列靈活運(yùn)用:

(1)判斷三條已知線段能否組成三角形

采用一種較為簡(jiǎn)便的判法:若最短邊與較長(zhǎng)邊的和大于最長(zhǎng)邊,則可構(gòu)成三角形,否則不能.

(2)確定三角形第三邊的取值范圍

兩邊之差<第三邊<兩邊之和

若時(shí)間寬裕,讓學(xué)生經(jīng)討論后自由表述,其他同學(xué)補(bǔ)充,自己將知識(shí)系統(tǒng)化,以自己的方式進(jìn)行建構(gòu).

6、布置作業(yè)

a. 書(shū)面作業(yè)P41#8、9

b. 思考題:1、在四邊形ABCD中,AC與BD相交于P,求證:

(AB+BC+CD+AD)<ac+bd<ab+bc+cd+ad< p="">

2、用15根等長(zhǎng)的火柴棒擺成的三角形中,最長(zhǎng)邊最多可以由幾根火柴棒組成?(提示:由上面方法2,a+b+c>2a 又a+b+c<3a得出a的范圍,所以可知最多可以由7根火柴棒組成)

初二上三角形教案5

教學(xué)目標(biāo)

1.等腰三角形的概念. 2.等腰三角形的性質(zhì). 3.等腰三角形的概念及性質(zhì)的應(yīng)用.

教學(xué)重點(diǎn): 1.等腰三角形的概念及性質(zhì). 2.等腰三角形性質(zhì)的應(yīng)用.

教學(xué)難點(diǎn):等腰三角形三線合一的性質(zhì)的理解及其應(yīng)用.

教學(xué)過(guò)程

Ⅰ.提出問(wèn)題,創(chuàng)設(shè)情境

在前面的學(xué)習(xí)中,我們認(rèn)識(shí)了軸對(duì)稱圖形,探究了軸對(duì)稱的性質(zhì),并且能夠作出一個(gè)簡(jiǎn)單平面圖形關(guān)于某一直線的軸對(duì)稱圖形,還能夠通過(guò)軸對(duì)稱變換來(lái)設(shè)計(jì)一些美麗的圖案.這節(jié)課我們就是從軸對(duì)稱的角度來(lái)認(rèn)識(shí)一些我們熟悉的幾何圖形.來(lái)研究:①三角形是軸對(duì)稱圖形嗎?②什么樣的三角形是軸對(duì)稱圖形?

有的三角形是軸對(duì)稱圖形,有的三角形不是.

問(wèn)題:那什么樣的三角形是軸對(duì)稱圖形?

滿足軸對(duì)稱的條件的三角形就是軸對(duì)稱圖形,也就是將三角形沿某一條直線對(duì)折后兩部分能夠完全重合的就是軸對(duì)稱圖形.

我們這節(jié)課就來(lái)認(rèn)識(shí)一種成軸對(duì)稱圖形的三角形──等腰三角形.

Ⅱ.導(dǎo)入新課: 要求學(xué)生通過(guò)自己的思考來(lái)做一個(gè)等腰三角形.

作一條直線L,在L上取點(diǎn)A,在L外取點(diǎn)B,作出點(diǎn)B關(guān)于直線L的對(duì)稱點(diǎn)C,連結(jié)AB、BC、CA,則可得到一個(gè)等腰三角形.

等腰三角形的定義:有兩條邊相等的三角形叫做等腰三角形.相等的兩邊叫做腰,另一邊叫做底邊,兩腰所夾的角叫做頂角,底邊與腰的夾角叫底角.同學(xué)們?cè)谧约鹤鞒龅牡妊切沃?,注明它的腰、底邊、頂角和底?

思考:

1.等腰三角形是軸對(duì)稱圖形嗎?請(qǐng)找出它的對(duì)稱軸.

2.等腰三角形的兩底角有什么關(guān)系?

3.頂角的平分線所在的直線是等腰三角形的對(duì)稱軸嗎?

4.底邊上的中線所在的直線是等腰三角形的對(duì)稱軸嗎?底邊上的高所在的直線呢?

結(jié)論:等腰三角形是軸對(duì)稱圖形.它的對(duì)稱軸是頂角的平分線所在的直線.因?yàn)榈妊切蔚膬裳嗟?,所以把這兩條腰重合對(duì)折三角形便知:等腰三角形是軸對(duì)稱圖形,它的對(duì)稱軸是頂角的平分線所在的直線.

要求學(xué)生把自己做的等腰三角形進(jìn)行折疊,找出它的對(duì)稱軸,并看它的兩個(gè)底角有什么關(guān)系.

沿等腰三角形的頂角的平分線對(duì)折,發(fā)現(xiàn)它兩旁的部分互相重合,由此可知這個(gè)等腰三角形的兩個(gè)底角相等,而且還可以知道頂角的平分線既是底邊上的中線,也是底邊上的高.

由此可以得到等腰三角形的性質(zhì):

1.等腰三角形的兩個(gè)底角相等(簡(jiǎn)寫(xiě)成“等邊對(duì)等角”).

2.等腰三角形的頂角平分線,底邊上的中線、底邊上的高互相重合(通常稱作“三線合一”).

由上面折疊的過(guò)程獲得啟發(fā),我們可以通過(guò)作出等腰三角形的對(duì)稱軸,得到兩個(gè)全等的三角形,從而利用三角形的全等來(lái)證明這些性質(zhì).同學(xué)們現(xiàn)在就動(dòng)手來(lái)寫(xiě)出這些證明過(guò)程).

如右圖,在△ABC中,AB=AC,作底邊BC的中線AD,因?yàn)?/p>

所以△BAD≌△CAD(SSS).

所以∠B=∠C.

]如右圖,在△ABC中,AB=AC,作頂角∠BAC的角平分線AD,因?yàn)?/p>

所以△BAD≌△CAD.

所以BD=CD,∠BDA=∠CDA= ∠BDC=90°.

[例1]如圖,在△ABC中,AB=AC,點(diǎn)D在AC上,且BD=BC=AD,

求:△ABC各角的度數(shù).

分析:根據(jù)等邊對(duì)等角的性質(zhì),我們可以得到

∠A=∠ABD,∠ABC=∠C=∠BDC,

再由∠BDC=∠A+∠ABD,就可得到∠ABC=∠C=∠BDC=2∠A.

再由三角形內(nèi)角和為180°,就可求出△ABC的三個(gè)內(nèi)角.

把∠A設(shè)為x的話,那么∠ABC、∠C都可以用x來(lái)表示,這樣過(guò)程就更簡(jiǎn)捷.

解:因?yàn)锳B=AC,BD=BC=AD,

所以∠ABC=∠C=∠BDC.

∠A=∠ABD(等邊對(duì)等角).

設(shè)∠A=x,則 ∠BDC=∠A+∠ABD=2x,

從而∠ABC=∠C=∠BDC=2x.

于是在△ABC中,有

∠A+∠ABC+∠C=x+2x+2x=180°,

解得x=36°. 在△ABC中,∠A=35°,∠ABC=∠C=72°.

[師]下面我們通過(guò)練習(xí)來(lái)鞏固這節(jié)課所學(xué)的知識(shí).

Ⅲ.隨堂練習(xí):1.課本P51練習(xí) 1、2、3. 2.閱讀課本P49~P51,然后小結(jié).

Ⅳ.課時(shí)小結(jié)

這節(jié)課我們主要探討了等腰三角形的性質(zhì),并對(duì)性質(zhì)作了簡(jiǎn)單的應(yīng)用.等腰三角形是軸對(duì)稱圖形,它的兩個(gè)底角相等(等邊對(duì)等角),等腰三角形的對(duì)稱軸是它頂角的平分線,并且它的頂角平分線既是底邊上的中線,又是底邊上的高.

我們通過(guò)這節(jié)課的學(xué)習(xí),首先就是要理解并掌握這些性質(zhì),并且能夠靈活應(yīng)用它們.

Ⅴ.作業(yè): 課本P56習(xí)題12.3第1、2、3、4題.

板書(shū)設(shè)計(jì)

12.3.1.1 等腰三角形

一、設(shè)計(jì)方案作出一個(gè)等腰三角形

二、等腰三角形性質(zhì): 1.等邊對(duì)等角 2.三線合一


精選圖文

221381
Z范文網(wǎng)、范文協(xié)會(huì)網(wǎng)、范文檔案館、