中文字幕人妻色偷偷久久_天天鲁一鲁摸一摸爽一爽_最新亚洲人成网站在线观看_999久久久免费精品国产_久久精品丝袜高跟鞋

歡迎訪一網(wǎng)寶!您身邊的知識(shí)小幫手,專注做最新的學(xué)習(xí)參考資料!

七年級(jí)有理數(shù)教案

一網(wǎng)寶 分享 時(shí)間: 加入收藏 我要投稿 點(diǎn)贊

總結(jié)公式的等號(hào)兩邊的特點(diǎn),用語(yǔ)言表達(dá)公式的內(nèi)容。通過逐層深入的練習(xí),鞏固完全平方公式兩種形式的應(yīng)用。一起看看七年級(jí)下冊(cè)實(shí)數(shù)教案!歡迎查閱!

七年級(jí)下冊(cè)實(shí)數(shù)教案1

一、內(nèi)容簡(jiǎn)介

本節(jié)課的主題:通過一系列的探究活動(dòng),引導(dǎo)學(xué)生從計(jì)算結(jié)果中總結(jié)出完全平方公式的兩種形式。

關(guān)鍵信息:

1、以教材作為出發(fā)點(diǎn),依據(jù)《數(shù)學(xué)課程標(biāo)準(zhǔn)》,引導(dǎo)學(xué)生體會(huì)、參與科學(xué)探究過程。首先提出等號(hào)左邊的兩個(gè)相乘的多項(xiàng)式和等號(hào)右邊得出的三項(xiàng)有什么關(guān)系。通過學(xué)生自主、獨(dú)立的發(fā)現(xiàn)問題,對(duì)可能的答案做出假設(shè)與猜想,并通過多次的檢驗(yàn),得出正確的結(jié)論。學(xué)生通過收集和處理信息、表達(dá)與交流等活動(dòng),獲得知識(shí)、技能、方法、態(tài)度特別是創(chuàng)新精神和實(shí)踐能力等方面的發(fā)展。

2、用標(biāo)準(zhǔn)的數(shù)學(xué)語(yǔ)言得出結(jié)論,使學(xué)生感受科學(xué)的嚴(yán)謹(jǐn),啟迪學(xué)習(xí)態(tài)度和方法。

二、學(xué)習(xí)者分析:

1、在學(xué)習(xí)本課之前應(yīng)具備的基本知識(shí)和技能:

①同類項(xiàng)的定義。

②合并同類項(xiàng)法則

③多項(xiàng)式乘以多項(xiàng)式法則。

2、學(xué)習(xí)者對(duì)即將學(xué)習(xí)的內(nèi)容已經(jīng)具備的水平:

在學(xué)習(xí)完全平方公式之前,學(xué)生已經(jīng)能夠整理出公式的右邊形式。這節(jié)課的目的就是讓學(xué)生從等號(hào)的左邊形式和右邊形式之間的關(guān)系,總結(jié)出公式的應(yīng)用方法。

三、教學(xué)/學(xué)習(xí)目標(biāo)及其對(duì)應(yīng)的課程標(biāo)準(zhǔn):

(一)教學(xué)目標(biāo):

1、經(jīng)歷探索完全平方公式的過程,進(jìn)一步發(fā)展符號(hào)感和推力能力。

2、會(huì)推導(dǎo)完全平方公式,并能運(yùn)用公式進(jìn)行簡(jiǎn)單的計(jì)算。

(二)知識(shí)與技能:經(jīng)歷從具體情境中抽象出符號(hào)的過程,認(rèn)識(shí)有理

數(shù)、實(shí)數(shù)、代數(shù)式、防城、不等式、函數(shù);掌握必要的運(yùn)算,(包括估算)技能;探索具體問題中的數(shù)量關(guān)系和變化規(guī)律,并能運(yùn)用代數(shù)式、防城、不等式、函數(shù)等進(jìn)行描述。

(四)解決問題:能結(jié)合具體情景發(fā)現(xiàn)并提出數(shù)學(xué)問題;嘗試從不同

角度尋求解決問題的方法,并能有效地解決問題,嘗試評(píng)價(jià)不同方法之間的差異;通過對(duì)解決問題過程的反思,獲得解決問題的經(jīng)驗(yàn)。

(五)情感與態(tài)度:敢于面對(duì)數(shù)學(xué)活動(dòng)中的困難,并有獨(dú)立克服困難

和運(yùn)用知識(shí)解決問題的成功體驗(yàn),有學(xué)好數(shù)學(xué)的自信心;并尊重與理解他人的見解;能從交流中獲益。

四、教育理念和教學(xué)方式:

1、教師是學(xué)生學(xué)習(xí)的組織者、促進(jìn)者、合作者:學(xué)生是學(xué)習(xí)的主人,在教師指導(dǎo)下主動(dòng)的、富有個(gè)性的學(xué)習(xí),用自己的身體去親自經(jīng)歷,用自己的心靈去親自感悟。

教學(xué)是師生交往、積極互動(dòng)、共同發(fā)展的過程。當(dāng)學(xué)生迷路的時(shí)

候,教師不輕易告訴方向,而是引導(dǎo)他怎樣去辨明方向;當(dāng)學(xué)生登山畏懼了的時(shí)候,教師不是拖著他走,而是喚起他內(nèi)在的精神動(dòng)力,鼓勵(lì)他不斷向上攀登。

2、采用“問題情景—探究交流—得出結(jié)論—強(qiáng)化訓(xùn)練”的模式

展開教學(xué)。

3、教學(xué)評(píng)價(jià)方式:

(1)通過課堂觀察,關(guān)注學(xué)生在觀察、總結(jié)、訓(xùn)練等活動(dòng)中的主

動(dòng)參與程度與合作交流意識(shí),及時(shí)給與鼓勵(lì)、強(qiáng)化、指導(dǎo)和矯正。

(2)通過判斷和舉例,給學(xué)生更多機(jī)會(huì),在自然放松的狀態(tài)下,

揭示思維過程和反饋知識(shí)與技能的掌握情況,使老師可以及時(shí)診斷學(xué)情,調(diào)查教學(xué)。

(3)通過課后訪談和作業(yè)分析,及時(shí)查漏補(bǔ)缺,確保達(dá)到預(yù)期的

教學(xué)效果。

五、教學(xué)媒體:多媒體六、教學(xué)和活動(dòng)過程:

教學(xué)過程設(shè)計(jì)如下:

〈一〉、提出問題

[引入]同學(xué)們,前面我們學(xué)習(xí)了多項(xiàng)式乘多項(xiàng)式法則和合并同類項(xiàng)法則,通過運(yùn)算下列四個(gè)小題,你能總結(jié)出結(jié)果與多項(xiàng)式中兩個(gè)單項(xiàng)式的關(guān)系嗎?

(2m+3n)2=_______________,(-2m-3n)2=______________,

(2m-3n)2=_______________,(-2m+3n)2=_______________。

〈二〉、分析問題

1、[學(xué)生回答]分組交流、討論

(2m+3n)2=4m2+12mn+9n2,(-2m-3n)2=4m2+12mn+9n2,

(2m-3n)2=4m2-12mn+9n2,(-2m+3n)2=4m2-12mn+9n2。

(1)原式的特點(diǎn)。

(2)結(jié)果的項(xiàng)數(shù)特點(diǎn)。

(3)三項(xiàng)系數(shù)的特點(diǎn)(特別是符號(hào)的特點(diǎn))。

(4)三項(xiàng)與原多項(xiàng)式中兩個(gè)單項(xiàng)式的關(guān)系。

2、[學(xué)生回答]總結(jié)完全平方公式的語(yǔ)言描述:

兩數(shù)和的平方,等于它們平方的和,加上它們乘積的兩倍;

兩數(shù)差的平方,等于它們平方的和,減去它們乘積的兩倍。

3、[學(xué)生回答]完全平方公式的數(shù)學(xué)表達(dá)式:

(a+b)2=a2+2ab+b2;

(a-b)2=a2-2ab+b2.

〈三〉、運(yùn)用公式,解決問題

1、口答:(搶答形式,活躍課堂氣氛,激發(fā)學(xué)生的學(xué)習(xí)積極性)

(m+n)2=____________,(m-n)2=_______________,

(-m+n)2=____________,(-m-n)2=______________,

(a+3)2=______________,(-c+5)2=______________,

(-7-a)2=______________,(0.5-a)2=______________.

2、判斷:

()①(a-2b)2=a2-2ab+b2

()②(2m+n)2=2m2+4mn+n2

()③(-n-3m)2=n2-6mn+9m2

()④(5a+0.2b)2=25a2+5ab+0.4b2

()⑤(5a-0.2b)2=5a2-5ab+0.04b2

()⑥(-a-2b)2=(a+2b)2

()⑦(2a-4b)2=(4a-2b)2

()⑧(-5m+n)2=(-n+5m)2

3、小試牛刀

①(x+y)2=______________;②(-y-x)2=_______________;

③(2x+3)2=_____________;④(3a-2)2=_______________;

⑤(2x+3y)2=____________;⑥(4x-5y)2=______________;

⑦(0.5m+n)2=___________;⑧(a-0.6b)2=_____________.

〈四〉、[學(xué)生小結(jié)]

你認(rèn)為完全平方公式在應(yīng)用過程中,需要注意那些問題?

(1)公式右邊共有3項(xiàng)。

(2)兩個(gè)平方項(xiàng)符號(hào)永遠(yuǎn)為正。

(3)中間項(xiàng)的符號(hào)由等號(hào)左邊的兩項(xiàng)符號(hào)是否相同決定。

(4)中間項(xiàng)是等號(hào)左邊兩項(xiàng)乘積的2倍。

〈五〉、冒險(xiǎn)島:

(1)(-3a+2b)2=________________________________

(2)(-7-2m)2=__________________________________

(3)(-0.5m+2n)2=_______________________________

(4)(3/5a-1/2b)2=________________________________

(5)(mn+3)2=__________________________________

(6)(a2b-0.2)2=_________________________________

(7)(2xy2-3x2y)2=_______________________________

(8)(2n3-3m3)2=________________________________

〈六〉、學(xué)生自我評(píng)價(jià)

[小結(jié)]通過本節(jié)課的學(xué)習(xí),你有什么收獲和感悟?

本節(jié)課,我們自己通過計(jì)算、分析結(jié)果,總結(jié)出了完全平方公式。在知識(shí)探索的過程中,同學(xué)們積極思考,大膽探索,團(tuán)結(jié)協(xié)作共同取得了進(jìn)步。

〈七〉[作業(yè)]P34隨堂練習(xí)P36習(xí)題

七年級(jí)下冊(cè)實(shí)數(shù)教案2

教學(xué)目標(biāo)

1.了解公式的意義,使學(xué)生能用公式解決簡(jiǎn)單的實(shí)際問題;

2.初步培養(yǎng)學(xué)生觀察、分析及概括的能力;

3.通過本節(jié)課的教學(xué),使學(xué)生初步了解公式來(lái)源于實(shí)踐又反作用于實(shí)踐。

教學(xué)建議

一、教學(xué)重點(diǎn)、難點(diǎn)

重點(diǎn):通過具體例子了解公式、應(yīng)用公式.

難點(diǎn):從實(shí)際問題中發(fā)現(xiàn)數(shù)量之間的關(guān)系并抽象為具體的公式,要注意從中反應(yīng)出來(lái)的歸納的思想方法。

二、重點(diǎn)、難點(diǎn)分析

人們從一些實(shí)際問題中抽象出許多常用的、基本的數(shù)量關(guān)系,往往寫成公式,以便應(yīng)用。如本課中梯形、圓的面積公式。應(yīng)用這些公式時(shí),首先要弄清楚公式中的字母所表示的意義,以及這些字母之間的數(shù)量關(guān)系,然后就可以利用公式由已知數(shù)求出所需的未知數(shù)。具體計(jì)算時(shí),就是求代數(shù)式的值了。有的公式,可以借助運(yùn)算推導(dǎo)出來(lái);有的公式,則可以通過實(shí)驗(yàn),從得到的反映數(shù)量關(guān)系的一些數(shù)據(jù)(如數(shù)據(jù)表)出發(fā),用數(shù)學(xué)方法歸納出來(lái)。用這些抽象出的具有一般性的公式解決一些問題,會(huì)給我們認(rèn)識(shí)和改造世界帶來(lái)很多方便。

三、知識(shí)結(jié)構(gòu)

本節(jié)一開始首先概述了一些常見的公式,接著三道例題循序漸進(jìn)的講解了公式的直接應(yīng)用、公式的先推導(dǎo)后應(yīng)用以及通過觀察歸納推導(dǎo)公式解決一些實(shí)際問題。整節(jié)內(nèi)容滲透了由一般到特殊、再由特殊到一般的辨證思想。

四、教法建議

1.對(duì)于給定的可以直接應(yīng)用的公式,首先在給出具體例子的前提下,教師創(chuàng)設(shè)情境,引導(dǎo)學(xué)生清晰地認(rèn)識(shí)公式中每一個(gè)字母、數(shù)字的意義,以及這些數(shù)量之間的對(duì)應(yīng)關(guān)系,在具體例子的基礎(chǔ)上,使學(xué)生參與挖倔其中蘊(yùn)涵的思想,明確公式的應(yīng)用具有普遍性,達(dá)到對(duì)公式的靈活應(yīng)用。

2.在教學(xué)過程中,應(yīng)使學(xué)生認(rèn)識(shí)有時(shí)問題的解決并沒有現(xiàn)成的公式可套,這就需要學(xué)生自己嘗試探求數(shù)量之間的關(guān)系,在已有公式的基礎(chǔ)上,通過分析和具體運(yùn)算推導(dǎo)新公式。

3.在解決實(shí)際問題時(shí),學(xué)生應(yīng)觀察哪些量是不變的,哪些量是變化的,明確數(shù)量之間的對(duì)應(yīng)變化規(guī)律,依據(jù)規(guī)律列出公式,再根據(jù)公式進(jìn)一步地解決問題。這種從特殊到一般、再?gòu)囊话愕教厥庹J(rèn)識(shí)過程,有助于提高學(xué)生分析問題、解決問題的能力。

教學(xué)設(shè)計(jì)示例

公式

一、教學(xué)目標(biāo)

(一)知識(shí)教學(xué)點(diǎn)

1.使學(xué)生能利用公式解決簡(jiǎn)單的實(shí)際問題.

2.使學(xué)生理解公式與代數(shù)式的關(guān)系.

(二)能力訓(xùn)練點(diǎn)

1.利用數(shù)學(xué)公式解決實(shí)際問題的能力.

2.利用已知的公式推導(dǎo)新公式的能力.

(三)德育滲透點(diǎn)

數(shù)學(xué)來(lái)源于生產(chǎn)實(shí)踐,又反過來(lái)服務(wù)于生產(chǎn)實(shí)踐.

(四)美育滲透點(diǎn)

數(shù)學(xué)公式是用簡(jiǎn)潔的數(shù)學(xué)形式來(lái)闡明自然規(guī)定,解決實(shí)際問題,形成了色彩斑斕的多種數(shù)學(xué)方法,從而使學(xué)生感受到數(shù)學(xué)公式的簡(jiǎn)潔美.

二、學(xué)法引導(dǎo)

1.數(shù)學(xué)方法:引導(dǎo)發(fā)現(xiàn)法,以復(fù)習(xí)提問小學(xué)里學(xué)過的公式為基礎(chǔ)、突破難點(diǎn)

2.學(xué)生學(xué)法:觀察→分析→推導(dǎo)→計(jì)算

三、重點(diǎn)、難點(diǎn)、疑點(diǎn)及解決辦法

1.重點(diǎn):利用舊公式推導(dǎo)出新的圖形的計(jì)算公式.

2.難點(diǎn):同重點(diǎn).

3.疑點(diǎn):把要求的圖形如何分解成已經(jīng)熟悉的圖形的和或差.

四、課時(shí)安排

1課時(shí)

五、教具學(xué)具準(zhǔn)備

投影儀,自制膠片。

六、師生互動(dòng)活動(dòng)設(shè)計(jì)

教者投影顯示推導(dǎo)梯形面積計(jì)算公式的圖形,學(xué)生思考,師生共同完成例1解答;教者啟發(fā)學(xué)生求圖形的面積,師生總結(jié)求圖形面積的公式.

七、教學(xué)步驟

(一)創(chuàng)設(shè)情景,復(fù)習(xí)引入

師:同學(xué)們已經(jīng)知道,代數(shù)的一個(gè)重要特點(diǎn)就是用字母表示數(shù),用字母表示數(shù)有很多應(yīng)用,公式就是其中之一,我們?cè)谛W(xué)里學(xué)過許多公式,請(qǐng)大家回憶一下,我們已經(jīng)學(xué)過哪些公式,教法說明,讓學(xué)生一開始就參與課堂教學(xué),使學(xué)生在后面利用公式計(jì)算感到不生疏.

在學(xué)生說出幾個(gè)公式后,師提出本節(jié)課我們應(yīng)在小學(xué)學(xué)習(xí)的基礎(chǔ)上,研究如何運(yùn)用公式解決實(shí)際問題.

板書: 公式

師:小學(xué)里學(xué)過哪些面積公式?

板書: S = ah

附圖

(出示投影1)。解釋三角形,梯形面積公式

【教法說明】讓學(xué)生感知用割補(bǔ)法求圖形的面積。

(二)探索求知,講授新課

師:下面利用面積公式進(jìn)行有關(guān)計(jì)算

(出示投影2)

例1 如圖是一個(gè)梯形,下底 (米),上底 ,高 ,利用梯形面積公式求這個(gè)梯形的面積S。

師生共同分析:1.根據(jù)梯形面積計(jì)算公式,要計(jì)算梯形面積,必須知道哪些量?這些現(xiàn)在知道嗎?

2.題中“M”是什么意思?(師補(bǔ)充說明厘米可寫作cm,千米寫作km,平方厘米寫作 等)

學(xué)生口述解題過程,教師予以指正并指出,強(qiáng)調(diào)解題的規(guī)范性.

【教法說明】1.通過分析,引導(dǎo)學(xué)生在一個(gè)實(shí)際問題中,必須明確哪些量是已知的,哪些量是未知的,要解決這個(gè)問題,必須已知哪些量.2.用公式計(jì)算時(shí),要先寫出公式,然后代入計(jì)算,養(yǎng)成良好的解題習(xí)慣.

(出示投影3)

例2 如圖是一個(gè)環(huán)形,外圓半徑 ,內(nèi)圓半徑 求這個(gè)環(huán)形的面積

學(xué)生討論:1.環(huán)形是怎樣形成的.2.如何求環(huán)形的面積討論后請(qǐng)學(xué)生板演,其他同學(xué)做在練習(xí)本上,教育巡回指導(dǎo).

評(píng)講時(shí)注意1.如果有學(xué)生作了簡(jiǎn)便計(jì)算 ,則給予表?yè)P(yáng)和鼓勵(lì):如果沒有學(xué)生這樣計(jì)算,則啟發(fā)學(xué)生這樣計(jì)算.

2.本題實(shí)際上是由圓的面積公式推導(dǎo)出環(huán)形面積公式.

3.進(jìn)一步強(qiáng)調(diào)解題的規(guī)范性

教法說明,讓學(xué)生做例題,學(xué)生能自己評(píng)判對(duì)與錯(cuò),優(yōu)與劣,是獲取知識(shí)的一個(gè)很好的途徑.

測(cè)試反饋,鞏固練習(xí)

(出示投影4)

1.計(jì)算底 ,高 的三角形面積

2.已知長(zhǎng)方形的長(zhǎng)是寬的1.6倍,如果用a表示寬,那么這個(gè)長(zhǎng)方形的周長(zhǎng) 是多少?當(dāng) 時(shí),求t

3.已知圓的半徑 , ,求圓的周長(zhǎng)C和面積S

4.從A地到B地有20千米上坡路和30千米下坡路,某車上坡時(shí)每小時(shí)走 千米,下坡時(shí)每小時(shí)走 千米。

(1)求A地到B地所用的時(shí)間公式。

(2)若 千米/時(shí), 千米/時(shí),求從A地到B地所用的時(shí)間。

學(xué)生活動(dòng):分兩次完成,每次兩題,兩人板演,其他同學(xué)在練習(xí)本上完成,做好后同桌交換評(píng)判,第一次可請(qǐng)兩位基礎(chǔ)較差的同學(xué)板演,第二次請(qǐng)中等層次的學(xué)生板演.

【教法說明】面向全體,分層教學(xué),能照顧兩極,使所有的同學(xué)有所發(fā)展.

師:公式本身是用等號(hào)聯(lián)接起來(lái)的代數(shù)式,許多公式在實(shí)際中都有重要的用處,可以用公式直接計(jì)算還可以利用公式推導(dǎo)出新的公式.

八、隨堂練習(xí)

(一)填空

1.圓的半徑為R,它的面積 ________,周長(zhǎng) _____________

2.平行四邊形的底邊長(zhǎng)是 ,高是 ,它的面積 _____________;如果 , ,那么 _________

3.圓錐的底面半徑為 ,高是 ,那么它的體積 __________如果 , ,那么 _________

(二)一種塑料三角板形狀,尺寸如圖,它的厚度是 ,求它的體積V,如果 , , ,V是多少?

九、布置作業(yè)

(一)必做題課本第22頁(yè)1、2、3第23頁(yè)B組1

(二)選做題課本第22頁(yè)5B組2

十、板書設(shè)計(jì)

附:隨堂練習(xí)答案

(一)1. 2. 3.

(二)

作業(yè)答案

必做題1.

2. 3.

.

選做題5.

探究活動(dòng)

根據(jù)給出的數(shù)據(jù)推導(dǎo)公式。

七年級(jí)下冊(cè)實(shí)數(shù)教案3

教學(xué)目標(biāo)

1.能解簡(jiǎn)易方程,并能用簡(jiǎn)易方程解簡(jiǎn)單的應(yīng)用題。

2.初步培養(yǎng)學(xué)生方程的思想及分析解決問題的能力。

教學(xué)重點(diǎn)和難點(diǎn)

重點(diǎn):簡(jiǎn)易方程的解法和根據(jù)實(shí)際問題列出方程。

難點(diǎn):正確地列出方程。

課堂教學(xué)過程設(shè)計(jì)

一、從學(xué)生原有的認(rèn)知結(jié)構(gòu)提出問題

1.針對(duì)以往學(xué)過的一些知識(shí),教師請(qǐng)學(xué)生回答下列問題:

(1)什么叫等式?等式的兩個(gè)性質(zhì)是什么?

(2)下列等式中x取什么數(shù)值時(shí),等式能夠成立?

2.在學(xué)生回答完上述問題的基礎(chǔ)上,引出課題

在小學(xué)學(xué)習(xí)方程時(shí),學(xué)生們已知有關(guān)方程的三個(gè)重要概念,即方程、方程的解和解方程.現(xiàn)在學(xué)習(xí)了等式之后,我們就可以更深刻、更全面地理解這些概念,并同時(shí)板書課題:簡(jiǎn)易方程.

二、講授新課

1.方程

在等式4+x=7中,我們將字母x稱為未知數(shù),或者說是待定的數(shù).像這樣含有未知數(shù)的等式,稱為方程.并板書方程定義.

例1 (投影)判斷下列各式是否為方程,如果是,指出已知數(shù)和未知數(shù);如果不是,說明為什么.

(1)5-2x=1;(2)y=4x-1;(3)x-2y=6;(4)2x2+5x+8.

分析:本題在解答時(shí)需注意兩點(diǎn):一是已知數(shù)應(yīng)包括它的符號(hào)在內(nèi);二是未知數(shù)的系數(shù)若是1,這個(gè)省寫的1也可看作已知數(shù).

(本題的解答應(yīng)由學(xué)生口述,教師利用投影片打出來(lái)完成)

2.簡(jiǎn)易方程

簡(jiǎn)易方程這一小節(jié)的前面主要是復(fù)習(xí)、歸納小學(xué)學(xué)過的 有關(guān)方程的基本知識(shí),提出了算術(shù)解法與代數(shù)解法的說法,以便以后逐步講述代數(shù)解法的優(yōu)越性。

例2 解下列方程:

(1)   (2)

分析 方程(1)的左邊需減去 ,根據(jù)等式的性質(zhì)(2),必須兩邊同時(shí)減去 ,得 ,方程的左邊需要乘以3,使 的系數(shù)化為1,根據(jù)等式的性質(zhì)(3),必須兩邊同時(shí)乘以3,得 ,方程(2)的解題思路與(1)類似。

解(1)方程兩邊都減去 ,得

兩邊都乘以3,得 。

(2)方程兩邊都加上6,得 。

方程兩邊都乘以 ,得 ,即 。

注意:(1)根據(jù)方程的解的概念,我們可以將所得結(jié)果代入原方程檢驗(yàn),如果左邊=右邊,說明結(jié)果是正確的,否則,左邊≠右邊,說明你求得的x的值,不是原方程的解,肯定計(jì)算有錯(cuò)誤,這時(shí),一定要細(xì)心檢查,或者再重解一遍.

(2)解簡(jiǎn)易方程時(shí),不要求寫出檢驗(yàn)這一步.

例3 甲隊(duì)有54人,乙隊(duì)有66人,問從甲隊(duì)調(diào)給乙隊(duì)幾人能使甲隊(duì)人數(shù)是乙隊(duì)人數(shù)的 ?

分析此題必須弄清:一、甲、乙兩隊(duì)原來(lái)各有多少人;二、變動(dòng)后甲、乙兩隊(duì)各有多少人(注意:甲隊(duì)減少的人數(shù)正是乙隊(duì)增加的人數(shù));三、題中的等量關(guān)系是:變動(dòng)后甲隊(duì)人數(shù)是乙隊(duì)人數(shù)的 ,即變動(dòng)后甲隊(duì)人數(shù)的3倍等于乙隊(duì)人數(shù).

解 設(shè)從甲隊(duì)調(diào)給乙隊(duì)x人,

則變動(dòng)后甲隊(duì)有 人,乙隊(duì)有 人,根據(jù)題意,得:

答:從甲隊(duì)調(diào)給乙隊(duì)24人。

三、課堂練習(xí)(投影)

1.判斷下列各式是不是方程,如果是,指出已知數(shù)和未知數(shù);如果不是,說明為什么.

(1)3y-1=2y; (2)3+4x+5x2; (3)7×8=8×7 (4)6=0.

2.根據(jù)條件列出方程:

(l)某數(shù)的一半比某數(shù)的3倍大4;

(2)某數(shù)比它的平方小42.

3.檢驗(yàn)下列各小題括號(hào)里的數(shù)是不是它前面的方程的解:

四、師生共同小結(jié)

1.請(qǐng)學(xué)生回答以下問題:

(1)本節(jié)課學(xué)習(xí)了哪些內(nèi)容?

(2)方程與代數(shù)式,方程與等式的區(qū)別是什么?

(3)如何列方程?

2.教師在學(xué)生回答完上述問題的基礎(chǔ)上,應(yīng)指出:

(1)方程、等式、代數(shù)式,這三者的定義是正確區(qū)分它們的標(biāo)準(zhǔn);

(2)方程的解是一個(gè)數(shù)值(或幾個(gè)數(shù)值),它是使方程左、右兩邊的值相等的未知數(shù)的值它是根據(jù)未知數(shù)與已知數(shù)之間的相等關(guān)系確定的.而解方程是指確定方程的解的過程,是一個(gè)變形過程.

五、作業(yè)

1.根據(jù)所給條件列出方程:

(1)某數(shù)與6的和的3倍等于21;

(2)某數(shù)的7倍比某數(shù)大5;

(3)某數(shù)與3的和的平方等于這數(shù)的15倍減去5;

(4)矩形的周長(zhǎng)是40,長(zhǎng)比寬多10,求矩形的長(zhǎng)與寬;

(5)三個(gè)連續(xù)整數(shù)之和為75,求這三個(gè)數(shù).

2.檢驗(yàn)下列各小題括號(hào)里的數(shù)是否是它前面的方程的解:

(3)x(x+1)=12,(x=3,x=4).


精選圖文

221381
Z范文網(wǎng)范文協(xié)會(huì)網(wǎng)、范文檔案館、