整數(shù)和分數(shù)統(tǒng)稱為有理數(shù)。與有理數(shù)對應(yīng)的是無理數(shù),如根號2無法用整數(shù)比表示。有理數(shù)的小數(shù)部分有限或為無限循環(huán)。一起看看《有理數(shù)》七年級數(shù)學上冊教案!歡迎查閱!
《有理數(shù)》七年級數(shù)學上冊教案1
教學目標
【知識與能力目標】
掌握有理數(shù)的概念,會對有理數(shù)按照一定的標準進行分類,培養(yǎng)分類能力。
【過程與方法目標】
體驗分類是數(shù)學上的常用處理問題的方法。
【情感態(tài)度價值觀目標】
要求學生樹立勇于探索、積極實踐的學習態(tài)度,通過合作交流培養(yǎng)協(xié)作精 神,撰寫小論文進一步了解數(shù)的發(fā)展歷史。
教學重難點
【教學重點】
正確理解有理數(shù)的概念。
【教學難點】
正確理解分類的標準和按照一定的標準進行分類。
課前準備
復習正負數(shù),嘗試將之前學過的數(shù)進行合理的分類。
教學過程
探索新知
之前我們已經(jīng)學習了很多不同類型的數(shù),通過上節(jié)課的學習,又知道了現(xiàn)在的數(shù)包括了負數(shù),現(xiàn)在請同學們在草稿紙上任意寫出3個數(shù)(同時請3個同學在黑板上寫出)。
問題1:觀察黑板上的9個數(shù),并給它們進行分類。
學生思考討論和交流分類的情況。
學生可能只給出很粗略的分類,如只分為“正數(shù)”和“負數(shù)”或“零”三類,此時,教師應(yīng)給予引導和鼓勵。
例如:
對于數(shù)5,可這樣問:5和5. 1有相同的類型嗎?5可以表示5個人,而5. 1可以表示人數(shù)嗎?(不可以)所以它們是不同類型的數(shù),數(shù)5是正數(shù)中整個的數(shù),我們就稱它為“正整數(shù)”,而5. 1不是整個的數(shù),稱為“正分數(shù),。··…(由于小數(shù)可化為分數(shù),以后把小數(shù)和分數(shù)都稱為分數(shù))
通過教師的引導、鼓勵和不斷完善,以及學生自己的概括,最后歸納出我們已經(jīng)學過的5類不同的數(shù),它們分別是“正整數(shù),零,負整數(shù),正分數(shù),負分數(shù),’。
按照書本的說法,得出“整數(shù)”“分數(shù)”和“有理數(shù)”的概念。
看書了解有理數(shù)名稱的由來。
“統(tǒng)稱”是指“合起來總的名稱”的意思。
試一試:按照以上的分類,你能畫出一張有理數(shù)的分類表嗎?你能說出以上有理數(shù)的分類是以什么為標準的嗎?(是按照整數(shù)和分數(shù)來劃分的)
練一練
1、任意寫出三個有理數(shù),并說出是什么類型的數(shù),與同伴進行交流。
2、教科書第8頁練習。
此練習中出現(xiàn)了集合的概念,可向?qū)W生作如下的說明。
把一些數(shù)放在一起,就組成了一個數(shù)的集合,簡稱“數(shù)集”,所有有理數(shù)組成的數(shù)集叫做有理數(shù)集。類似地,所有整數(shù)組成的數(shù)集叫做整數(shù)集,所有負數(shù)組成的數(shù)集叫做負數(shù)集……;
數(shù)集一般用圓圈或大括號表示,因為集合中的數(shù)是無限的,而本題中只填了所給的幾個數(shù),所以應(yīng)該加上省略號。
思考:上面練習中的四個集合合并在一起就是全體有理數(shù)的集合嗎?
創(chuàng)新探究
問題2:有理數(shù)可分為正數(shù)和負數(shù)兩大類,對嗎?為什么?
教學時,要讓學生總結(jié)已經(jīng)學過的數(shù),鼓勵學生概括,通過交流和討論,教師作適當?shù)闹笇?,逐步得到如下的分類表?/p>
小結(jié)與作業(yè)
課堂小結(jié)
請同學們回顧本節(jié)課所學知識,回答下列問題:
1、有理數(shù)是怎樣定義的?
2、有理數(shù)有幾種分類方法?具體是怎樣分類的?
3、有理數(shù)的學習過程中,應(yīng)注意什么?
到現(xiàn)在為止我們學過的數(shù)都是有理數(shù)(圓周率除外),有理數(shù)可以按不同的標準進行分類,標準不同,分類的結(jié)果也不同。
作業(yè)
教科書第14頁習題1.2第1題
板書設(shè)計
《有理數(shù)》七年級數(shù)學上冊教案2
教學目標
1.理解有理數(shù)加法的意義,掌握有理數(shù)加法法則中的符號法則和絕對值運算法則;
2.能根據(jù)有理數(shù)加法法則熟練地進行有理數(shù)加法運算,弄清有理數(shù)加法與非負數(shù)加法的區(qū)別;
3.三個或三個以上有理數(shù)相加時,能正確應(yīng)用加法交換律和結(jié)合律簡化運算過程;
4.通過有理數(shù)加法法則及運算律在加法運算中的運用,培養(yǎng)學生的運算能力;
5.本節(jié)課通過行程問題說明法則的合理性,然后又通過實例說明如何運用法則和運算律,讓學生感知到數(shù)學知識來源于生活,并應(yīng)用于生活。
教學建議
(一)重點、難點分析
本節(jié)教學的重點是依據(jù)法則熟練進行運算。難點是法則的理解。
(1)加法法則本身是一種規(guī)定,教材通過行程問題讓學生了解法則的合理性。
(2)具體運算時,應(yīng)先判別題目屬于運算法則中的哪個類型,是同號相加、異號相加、還是與0相加。
(3)如果是同號相加,取相同的符號,并把絕對值相加。如果是異號兩數(shù)相加,應(yīng)先判別絕對值的大小關(guān)系,如果絕對值相等,則和為0;如果絕對值不相等,則和的符號取絕對值較大的加數(shù)的符號,和的絕對值就是較大的絕對值與較小的絕對值的差。一個數(shù)與0相加,仍得這個數(shù)。
(二)知識結(jié)構(gòu)
(三)教法建議
1.對于基礎(chǔ)比較差的同學,在學習新課以前可以適當復習小學中算術(shù)運算以及正負數(shù)、相反數(shù)、絕對值等知識。
2.法則是規(guī)定的,而教材開始部分的行程問題是為了說明加法法則的合理性。
3.應(yīng)強調(diào)加法交換律“a+b=b+a”中字母a、b的任意性。
4.計算三個或三個以上的加法算式,應(yīng)建議學生養(yǎng)成良好的運算習慣。不要盲目動手,應(yīng)該先仔細觀察式子的特點,深刻認識加數(shù)間的相互關(guān)系,找到合理的運算步驟,再適當運用加法交換律和結(jié)合律可以使加法運算更為簡化。
5.可以給出一些類似“兩數(shù)之和必大于任何一個加數(shù)”的判斷題,以明確由于負數(shù)參與加法運算,一些算術(shù)加法中的正確結(jié)論在有理數(shù)加法運算中未必也成立。
6.在探討導出法則的行程問題時,可以嘗試發(fā)揮多媒體教學的作用。用動畫演示人或物體在同一直線上兩次運動的過程,讓學生更好的理解有理數(shù)運算法則。
教學設(shè)計示例
(第一課時)
教學目的
1.使學生理解有理數(shù)加法的意義,初步掌握有理數(shù)加法法則,并能準確地進行運算.
2.通過運算,培養(yǎng)學生的運算能力.
教學重點與難點
重點:熟練應(yīng)用法則進行加法運算.
難點:法則的理解.
教學過程
(一)復習提問
1.有理數(shù)是怎么分類的?
2.有理數(shù)的絕對值是怎么定義的?一個有理數(shù)的絕對值的幾何意義是什么?
3.有理數(shù)大小比較是怎么規(guī)定的?下列各組數(shù)中,哪一個較大?利用數(shù)軸說明?
-3與-2;|3|與|-3|;|-3|與0;
-2與|+1|;-|+4|與|-3|.
(二)引入新課
在小學算術(shù)中學過了加、減、乘、除四則運算,這些運算是在正有理數(shù)和零的范圍內(nèi)的運算.引入負數(shù)之后,這些運算法則將是怎樣的呢?我們先來學運算.
(三)進行新課 (板書課題)
例1 如圖所示,某人從原點0出發(fā),如果第一次走了5米,第二次接著又走了3米,求兩次行走后某人在什么地方?
兩次行走后距原點0為8米,應(yīng)該用加法.
為區(qū)別向東還是向西走,這里規(guī)定向東走為正,向西走為負.這兩數(shù)相加有以下三種情況:
1.同號兩數(shù)相加
(1)某人向東走5米,再向東走3米,兩次一共走了多少米?
這是求兩次行走的路程的和.
5+3=8
用數(shù)軸表示如圖
從數(shù)軸上表明,兩次行走后在原點0的東邊.離開原點的距離是8米.因此兩次一共向東走了8米.
可見,正數(shù)加正數(shù),其和仍是正數(shù),和的絕對值等于這兩個加數(shù)的絕對值的和.
(2)某人向西走5米,再向西走3米,兩次一共向東走了多少米?
顯然,兩次一共向西走了8米
(-5)+(-3)=-8
用數(shù)軸表示如圖
從數(shù)軸上表明,兩次行走后在原點0的西邊,離開原點的距離是8米.因此兩次一共向東走了-8米.
可見,負數(shù)加負數(shù),其和仍是負數(shù),和的絕對值也是等于兩個加數(shù)的絕對值的和.
總之,同號兩數(shù)相加,取相同的符號,并把絕對值相加.
例如,(-4)+(-5),……同號兩數(shù)相加
(-4)+(-5)=-( ),…取相同的符號
4+5=9……把絕對值相加
∴ (-4)+(-5)=-9.
口答練習:
(1)舉例說明算式7+9的實際意義?
(2)(-20)+(-13)=?
(3)
2.異號兩數(shù)相加
(1)某人向東走5米,再向西走5米,兩次一共向東走了多少米?
由數(shù)軸上表明,兩次行走后,又回到了原點,兩次一共向東走了0米.
5+(-5)=0
可知,互為相反數(shù)的兩個數(shù)相加,和為零.
(2)某人向東走5米,再向西走3米,兩次一共向東走了多少米?
由數(shù)軸上表明,兩次行走后在原點o的東邊,離開原點的距離是2米.因此,兩次一共向東走了2米.
就是 5+(-3)=2.
(3)某人向東走3米,再向西走5米,兩次一共向東走了多少米?
由數(shù)軸上表明,兩次行走后在原點o的西邊,離開原點的距離是2米.因此,兩次一共向東走了-2米.
就是 3+(-5)=-2.
請同學們想一想,異號兩數(shù)相加的法則是怎么規(guī)定的?強調(diào)和的符號是如何確定的?和的絕對值如何確定?
最后歸納
絕對值不相等的異號兩數(shù)相加,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值,互為相反數(shù)的兩個數(shù)相加得0.
例如(-8)+5……絕對值不相等的異號兩數(shù)相加
8>5
(-8)+5=-( )……取絕對值較大的加數(shù)符號
8-5=3 ……用較大的絕對值減去較小的絕對值
∴(-8)+5=-3.
口答練習
用算式表示:溫度由-4℃上升7℃,達到什么溫度.
(-4)+7=3(℃)
3.一個數(shù)和零相加
(1)某人向東走5米,再向東走0米,兩次一共向東走了多少米?
顯然,5+0=5.結(jié)果向東走了5米.
(2)某人向西走5米,再向東走0米,兩次一共向東走了多少米?
容易得出:(-5)+0=-5.結(jié)果向東走了-5米,即向西走了5米.
請同學們把(1)、(2)畫出圖來
由(1),(2)得出:一個數(shù)同0相加,仍得這個數(shù).
總結(jié)有理數(shù)加法的三個法則.學生看書,引導他們看有理數(shù)加法運算的三種情況.
有理數(shù)加法運算的三種情況:
特例:兩個互為相反數(shù)相加;
(3)一個數(shù)和零相加.
每種運算的法則強調(diào):(1)確定和的符號;(2)確定和的絕對值的方法.
(四)例題分析
例1 計算(-3)+(-9).
分析:這是兩個負數(shù)相加,屬于同號兩數(shù)相加,和的符號與加數(shù)相同(應(yīng)為負),和的絕對值就是把絕對值相加(應(yīng)為3+9=12)(強調(diào)相同、相加的特征).
解:(-3)+(-9)=-12.
例2
分析:這是異號兩數(shù)相加,和的符號與絕對值較大的加數(shù)的符號相同(應(yīng)為負),和的絕對值等于較大絕對值減去較小絕對值..(強調(diào)“兩個較大”“一個較小”)
解:
解題時,先確定和的符號,后計算和的絕對值.
(五)鞏固練習
1.計算(口答)
(1)4+9; (2) 4+(-9); (3)-4+9; (4)(-4)+(-9);
(5)4+(-4); (6)9+(-2); (7)(-9)+2; (8)-9+0;
2.計算
(1)5+(-22); (2)(-1.3)+(-8)
(3)(-0.9)+1.5; (4)2.7+(-3.5)
《有理數(shù)》七年級數(shù)學上冊教案3
一、 知識與能力
理解有理數(shù)的概念,懂得有理數(shù)的兩種分類方法:會判別一個有理數(shù)是整數(shù)還是分數(shù),是正數(shù)、負數(shù)還是零。
二、過程與方法
經(jīng)歷對有理數(shù)進行分類的探索過程,初步感受分類討論的思想。
三、情感態(tài)度與價值觀
通過對有理數(shù)的學習,體會到數(shù)學與現(xiàn)實世界的緊密聯(lián)系。
教學重難點及突破
在引入了負數(shù)后,本課對所學過的數(shù)按照一定的標準進行分類,提出了有理數(shù)的概念。分類是數(shù)學中解決問題的常用手段,通過本節(jié)課的學習,使學生了解分類的思想并進行簡單的分類是數(shù)學能力的體現(xiàn),教師在教學中應(yīng)引起足夠的重視。關(guān)于分類標準與分類結(jié)果的關(guān)系,分類標準的確定可向?qū)W生作適當?shù)臐B透,集合的概念比較抽象,學生真正接受需要很長的過程,本課不宜過多展開。
教學準備
用電腦制作動畫體現(xiàn)有理數(shù)的分類過程。
教學過程
四、課堂引入
1、我們把小學里學過的數(shù)歸納為整數(shù)與分數(shù),引進了負數(shù)以后,我們學過的數(shù)有哪些?將如何歸類?
2.舉例說明現(xiàn)實中具有相反意義的量。
3.如果由A地向南走3千米用3千米表示,那么-5千米表示什么意義?
4.舉兩個例子說明+5與-5的區(qū)別。