中文字幕人妻色偷偷久久_天天鲁一鲁摸一摸爽一爽_最新亚洲人成网站在线观看_999久久久免费精品国产_久久精品丝袜高跟鞋

歡迎訪一網(wǎng)寶!您身邊的知識小幫手,專注做最新的學習參考資料!

八年級數(shù)學公開課教案

一網(wǎng)寶 分享 時間: 加入收藏 我要投稿 點贊

在前面的學習中,我們認識了軸對稱圖形,探究了軸對稱的性質(zhì),并且能夠作出一個簡單平面圖形關于某一直線的軸對稱圖形,一起看看八年級數(shù)學上教案!歡迎查閱!

八年級數(shù)學上教案1

教學目標

1.等腰三角形的概念.2.等腰三角形的性質(zhì).3.等腰三角形的概念及性質(zhì)的應用.

教學重點:1.等腰三角形的概念及性質(zhì).2.等腰三角形性質(zhì)的應用.

教學難點:等腰三角形三線合一的性質(zhì)的理解及其應用.

教學過程

Ⅰ.提出問題,創(chuàng)設情境

在前面的學習中,我們認識了軸對稱圖形,探究了軸對稱的性質(zhì),并且能夠作出一個簡單平面圖形關于某一直線的軸對稱圖形,還能夠通過軸對稱變換來設計一些美麗的圖案.這節(jié)課我們就是從軸對稱的角度來認識一些我們熟悉的幾何圖形.來研究:①三角形是軸對稱圖形嗎?②什么樣的三角形是軸對稱圖形?

有的三角形是軸對稱圖形,有的三角形不是.

問題:那什么樣的三角形是軸對稱圖形?

滿足軸對稱的條件的三角形就是軸對稱圖形,也就是將三角形沿某一條直線對折后兩部分能夠完全重合的就是軸對稱圖形.

我們這節(jié)課就來認識一種成軸對稱圖形的三角形──等腰三角形.

Ⅱ.導入新課:要求學生通過自己的思考來做一個等腰三角形.

作一條直線L,在L上取點A,在L外取點B,作出點B關于直線L的對稱點C,連結AB、BC、CA,則可得到一個等腰三角形.

等腰三角形的定義:有兩條邊相等的三角形叫做等腰三角形.相等的兩邊叫做腰,另一邊叫做底邊,兩腰所夾的角叫做頂角,底邊與腰的夾角叫底角.同學們在自己作出的等腰三角形中,注明它的腰、底邊、頂角和底角.

思考:

1.等腰三角形是軸對稱圖形嗎?請找出它的對稱軸.

2.等腰三角形的兩底角有什么關系?

3.頂角的平分線所在的直線是等腰三角形的對稱軸嗎?

4.底邊上的中線所在的直線是等腰三角形的對稱軸嗎?底邊上的高所在的直線呢?

結論:等腰三角形是軸對稱圖形.它的對稱軸是頂角的平分線所在的直線.因為等腰三角形的兩腰相等,所以把這兩條腰重合對折三角形便知:等腰三角形是軸對稱圖形,它的對稱軸是頂角的平分線所在的直線.

要求學生把自己做的等腰三角形進行折疊,找出它的對稱軸,并看它的兩個底角有什么關系.

沿等腰三角形的頂角的平分線對折,發(fā)現(xiàn)它兩旁的部分互相重合,由此可知這個等腰三角形的兩個底角相等,而且還可以知道頂角的平分線既是底邊上的中線,也是底邊上的高.

由此可以得到等腰三角形的性質(zhì):

1.等腰三角形的兩個底角相等(簡寫成“等邊對等角”).

2.等腰三角形的頂角平分線,底邊上的中線、底邊上的高互相重合(通常稱作“三線合一”).

由上面折疊的過程獲得啟發(fā),我們可以通過作出等腰三角形的對稱軸,得到兩個全等的三角形,從而利用三角形的全等來證明這些性質(zhì).同學們現(xiàn)在就動手來寫出這些證明過程).

如右圖,在△ABC中,AB=AC,作底邊BC的中線AD,因為

所以△BAD≌△CAD(SSS).

所以∠B=∠C.

]如右圖,在△ABC中,AB=AC,作頂角∠BAC的角平分線AD,因為

所以△BAD≌△CAD.

所以BD=CD,∠BDA=∠CDA=∠BDC=90°.

[例1]如圖,在△ABC中,AB=AC,點D在AC上,且BD=BC=AD,

求:△ABC各角的度數(shù).

分析:根據(jù)等邊對等角的性質(zhì),我們可以得到

∠A=∠ABD,∠ABC=∠C=∠BDC,

再由∠BDC=∠A+∠ABD,就可得到∠ABC=∠C=∠BDC=2∠A.

再由三角形內(nèi)角和為180°,就可求出△ABC的三個內(nèi)角.

把∠A設為x的話,那么∠ABC、∠C都可以用x來表示,這樣過程就更簡捷.

解:因為AB=AC,BD=BC=AD,

所以∠ABC=∠C=∠BDC.

∠A=∠ABD(等邊對等角).

設∠A=x,則∠BDC=∠A+∠ABD=2x,

從而∠ABC=∠C=∠BDC=2x.

于是在△ABC中,有

∠A+∠ABC+∠C=x+2x+2x=180°,

解得x=36°.在△ABC中,∠A=35°,∠ABC=∠C=72°.

[師]下面我們通過練習來鞏固這節(jié)課所學的知識.

Ⅲ.隨堂練習:1.課本P51練習1、2、3.2.閱讀課本P

49~P51,然后小結.

Ⅳ.課時小結

這節(jié)課我們主要探討了等腰三角形的性質(zhì),并對性質(zhì)作了簡單的應用.等腰三角形是軸對稱圖形,它的兩個底角相等(等邊對等角),等腰三角形的對稱軸是它頂角的平分線,并且它的頂角平分線既是底邊上的中線,又是底邊上的高.

我們通過這節(jié)課的學習,首先就是要理解并掌握這些性質(zhì),并且能夠靈活應用它們.

Ⅴ.作業(yè):課本P56習題12.3第1、2、3、4題.

板書設計

12.3.1.1等腰三角形

一、設計方案作出一個等腰三角形

二、等腰三角形性質(zhì):1.等邊對等角2.三線合一

八年級數(shù)學上教案2

教學目標:

1、經(jīng)歷用數(shù)格子的辦法探索勾股定理的過程,進一步發(fā)展學生的合情推力意識,主動探究的習慣,進一步體會數(shù)學與現(xiàn)實生活的緊密聯(lián)系。

2、探索并理解直角三角形的三邊之間的數(shù)量關系,進一步發(fā)展學生的說理和簡單的推理的意識及能力。

重點難點:

重點:了解勾股定理的由來,并能用它來解決一些簡單的問題。

難點:勾股定理的發(fā)現(xiàn)

教學過程

一、創(chuàng)設問題的情境,激發(fā)學生的學習熱情,導入課題

出示投影1(章前的圖文p1)教師道白:介紹我國古代在勾股定理研究方面的貢獻,并結合課本p5談一談,講述我國是最早了解勾股定理的國家之一,介紹商高(三千多年前周期的數(shù)學家)在勾股定理方面的貢獻。

出示投影2(書中的P2圖1—2)并回答:

1、觀察圖1-2,正方形A中有_______個小方格,即A的面積為______個單位。

正方形B中有_______個小方格,即A的面積為______個單位。

正方形C中有_______個小方格,即A的面積為______個單位。

2、你是怎樣得出上面的結果的?在學生交流回答的基礎上教師直接發(fā)問:

3、圖1—2中,A,B,C之間的面積之間有什么關系?

學生交流后形成共識,教師板書,A+B=C,接著提出圖1—1中的A.B,C的關系呢?

二、做一做

出示投影3(書中P3圖1—4)提問:

1、圖1—3中,A,B,C之間有什么關系?

2、圖1—4中,A,B,C之間有什么關系?

3、從圖1—1,1—2,1—3,1|—4中你發(fā)現(xiàn)什么?

學生討論、交流形成共識后,教師總結:

以三角形兩直角邊為邊的正方形的面積和,等于以斜邊的正方形面積。

三、議一議

1、圖1—1、1—2、1—3、1—4中,你能用三角形的邊長表示正方形的面積嗎?

2、你能發(fā)現(xiàn)直角三角形三邊長度之間的關系嗎?

在同學的交流基礎上,老師板書:

直角三角形邊的兩直角邊的平方和等于斜邊的平方。這就是的“勾股定理”

也就是說:如果直角三角形的兩直角邊為a,b,斜邊為c

那么

我國古代稱直角三角形的較短的直角邊為勾,較長的為股,斜邊為弦,這就是勾股定理的由來。

3、分別以5厘米和12厘米為直角邊做出一個直角三角形,并測量斜邊的長度(學生測量后回答斜邊長為13)請大家想一想(2)中的規(guī)律,對這個三角形仍然成立嗎?(回答是肯定的:成立)

四、想一想

這里的29英寸(74厘米)的電視機,指的是屏幕的長嗎?只的是屏幕的款嗎?那他指什么呢?

五、鞏固練習

1、錯例辨析:

△ABC的兩邊為3和4,求第三邊

解:由于三角形的兩邊為3、4

所以它的第三邊的c應滿足=25

即:c=5

辨析:(1)要用勾股定理解題,首先應具備直角三角形這個必不可少的條件,可本題

△ABC并未說明它是否是直角三角形,所以用勾股定理就沒有依據(jù)。

(2)若告訴△ABC是直角三角形,第三邊C也不一定是滿足,題目中并為交待C是斜邊

綜上所述這個題目條件不足,第三邊無法求得。

2、練習P7§1.11

六、作業(yè)

課本P7§1.12、3、4

八年級數(shù)學上教案3

教學目標:

1.經(jīng)歷運用拼圖的方法說明勾股定理是正確的過程,在數(shù)學活動中發(fā)展學生的探究意識和合作交流的習慣。

2.掌握勾股定理和他的簡單應用

重點難點:

重點:能熟練運用拼圖的方法證明勾股定理

難點:用面積證勾股定理

教學過程

七、創(chuàng)設問題的情境,激發(fā)學生的學習熱情,導入課題

我們已經(jīng)通過數(shù)格子的方法發(fā)現(xiàn)了直角三角形三邊的關系,究竟是幾個實例,是否具有普遍的意義,還需加以論證,下面就是今天所要研究的內(nèi)容,下邊請大家畫四個全等的直角三角形,并把它剪下來,用這四個直角三角形,拼一拼、擺一擺,看看能否得到一個含有以斜邊c為邊長的正方形,并與同學交流。在同學操作的過程中,教師展示投影1(書中p7圖1—7)接著提問:大正方形的面積可表示為什么?

(同學們回答有這幾種可能:(1)(2))

在同學交流形成共識之后,教師把這兩種表示大正方形面積的式子用等號連接起來。

=請同學們對上面的式子進行化簡,得到:即=

這就可以從理論上說明勾股定理存在。請同學們?nèi)ビ脛e的拼圖方法說明勾股定理。

八、講例

1.飛機在空中水平飛行,某一時刻剛好飛機飛到一個男孩頭頂正上方4000多米處,過20秒,飛機距離這個男孩頭頂5000米,飛機每時飛行多少千米?

分析:根據(jù)題意:可以先畫出符合題意的圖形。如右圖,圖中△ABC的米,AB=5000米,欲求飛機每小時飛行多少千米,就要知道飛機在20秒的時間里的飛行路程,即圖中的CB的長,由于直角△ABC的斜邊AB=5000米,AC=4000米,這樣的CB就可以通過勾股定理得出。這里一定要注意單位的換算。

解:由勾股定理得

即BC=3千米飛機20秒飛行3千米,那么它1小時飛行的距離為:

答:飛機每個小時飛行540千米。

九、議一議

展示投影2(書中的圖1—9)

觀察上圖,應用數(shù)格子的方法判斷圖中的三角形的三邊長是否滿足

同學在議論交流形成共識之后,老師總結。

勾股定理存在于直角三角形中,不是直角三角形就不能使用勾股定理。

十、作業(yè)

1、1、課文P11§1.21、2

2、選用作業(yè)。


精選圖文

221381
Z范文網(wǎng)范文協(xié)會網(wǎng)、范文檔案館、