難點(diǎn)1 集合思想及應(yīng)用
集合是高中數(shù)學(xué)的基本知識(shí),為歷年必考內(nèi)容之一,主要考查對(duì)集合基本概念的認(rèn)識(shí)和理解,以及作為工具,考查集合語(yǔ)言和集合思想的運(yùn)用.本節(jié)主要是幫助考生運(yùn)用集合的觀點(diǎn),不斷加深對(duì)集合概念、集合語(yǔ)言、集合思想的理解與應(yīng)用.
●難點(diǎn)磁場(chǎng)
(★★★★★)已知集合A={(x,y)|x2+mx-y+2=0},B={(x,y)|x-y+1=0,且0≤x≤2},如果A∩B≠,求實(shí)數(shù)m的取值范圍.
●案例探究
?。劾?]設(shè)A={(x,y)|y2-x-1=0},B={(x,y)|4x2+2x-2y+5=0},C={(x,y)|y=kx+b},是否存在k、b∈N,使得(A∪B)∩C=,證明此結(jié)論.
命題意圖:本題主要考查考生對(duì)集合及其符號(hào)的分析轉(zhuǎn)化能力,即能從集合符號(hào)上分辨出所考查的知識(shí)點(diǎn),進(jìn)而解決問(wèn)題.屬★★★★★級(jí)題目.
知識(shí)依托:解決此題的閃光點(diǎn)是將條件(A∪B)∩C=轉(zhuǎn)化為A∩C=且B∩C=,這樣難度就降低了.
錯(cuò)解分析:此題難點(diǎn)在于考生對(duì)符號(hào)的不理解,對(duì)題目所給出的條件不能認(rèn)清其實(shí)質(zhì)內(nèi)涵,因而可能感覺(jué)無(wú)從下手.
技巧與方法:由集合A與集合B中的方程聯(lián)立構(gòu)成方程組,用判別式對(duì)根的情況進(jìn)行限制,可得到b、k的范圍,又因b、k∈N,進(jìn)而可得值.
解:∵(A∪B)∩C=,∴A∩C=且B∩C=
∵ ∴k2x2+(2bk-1)x+b2-1=0
∵A∩C=
∴Δ1=(2bk-1)2-4k2(b2-1)1 ①
∵
∴4x2+(2-2k)x+(5+2b)=0
∵B∩C=,∴Δ2=(1-k)2-4(5-2b)