中文字幕人妻色偷偷久久_天天鲁一鲁摸一摸爽一爽_最新亚洲人成网站在线观看_999久久久免费精品国产_久久精品丝袜高跟鞋

歡迎訪一網(wǎng)寶!您身邊的知識小幫手,專注做最新的學(xué)習(xí)參考資料!

初三化學(xué)復(fù)習(xí)提綱模板

一網(wǎng)寶 分享 時間: 加入收藏 我要投稿 點贊

總結(jié)就是對一個時期的學(xué)習(xí)、工作或其完成情況進(jìn)行一次全面系統(tǒng)的回顧和分析的書面材料,它可以使我們更有效率,為此要我們寫一份總結(jié)。你想知道總結(jié)怎么寫嗎?為了讓您在寫的過程中更加簡單方便,一起來參考是怎么寫的吧!下面給大家分享關(guān)于初三數(shù)學(xué)知識點總結(jié),歡迎閱讀!

初三數(shù)學(xué)知識點總結(jié)范本1

1、矩形的概念

有一個角是直角的平行四邊形叫做矩形。

2、矩形的性質(zhì)

(1)具有平行四邊形的一切性質(zhì)。

(2)矩形的四個角都是直角。

(3)矩形的對角線相等。

(4)矩形是軸對稱圖形。

3、矩形的判定

(1)定義:有一個角是直角的平行四邊形是矩形。

(2)定理1:有三個角是直角的四邊形是矩形。

(3)定理2:對角線相等的平行四邊形是矩形。

4、矩形的面積:S矩形=長×寬=ab

初三數(shù)學(xué)重點知識點

1、正方形的概念

有一組鄰邊相等并且有一個角是直角的平行四邊形叫做正方形。

2、正方形的性質(zhì)

(1)具有平行四邊形、矩形、菱形的一切性質(zhì);

(2)正方形的四個角都是直角,四條邊都相等;

(3)正方形的兩條對角線相等,并且互相垂直平分,每一條對角線平分一組對角;

(4)正方形是軸對稱圖形,有4條對稱軸;

(5)正方形的一條對角線把正方形分成兩個全等的等腰直角三角形,兩條對角線把正方形分成四個全等的小等腰直角三角形;

(6)正方形的一條對角線上的`一點到另一條對角線的兩端點的距離相等。

3、正方形的判定

(1)判定一個四邊形是正方形的主要依據(jù)是定義,途徑有兩種:

先證它是矩形,再證有一組鄰邊相等。

先證它是菱形,再證有一個角是直角。

(2)判定一個四邊形為正方形的一般順序如下:

先證明它是平行四邊形;

再證明它是菱形(或矩形);

最后證明它是矩形(或菱形)。

初三數(shù)學(xué)知識點總結(jié)范本2

1、概念:

把一個圖形繞著某一點O轉(zhuǎn)動一個角度的圖形變換叫做旋轉(zhuǎn),點O叫做旋轉(zhuǎn)中心,轉(zhuǎn)動的角叫做旋轉(zhuǎn)角。

旋轉(zhuǎn)三要素:旋轉(zhuǎn)中心、旋轉(zhuǎn)方面、旋轉(zhuǎn)角。

2、旋轉(zhuǎn)的性質(zhì):

(1)旋轉(zhuǎn)前后的兩個圖形是全等形;

(2)兩個對應(yīng)點到旋轉(zhuǎn)中心的距離相等。

(3)兩個對應(yīng)點與旋轉(zhuǎn)中心的連線段的夾角等于旋轉(zhuǎn)角。

3、中心對稱:

把一個圖形繞著某一個點旋轉(zhuǎn)180,如果它能夠與另一個圖形重合,那么就說這兩個圖形關(guān)于這個點對稱或中心對稱,這個點叫做對稱中心。

這兩個圖形中的對應(yīng)點叫做關(guān)于中心的對稱點。

4、中心對稱的性質(zhì):

(1)關(guān)于中心對稱的兩個圖形,對稱點所連線段都經(jīng)過對稱中心,而且被對稱中心所平分。

(2)關(guān)于中心對稱的兩個圖形是全等圖形。

5、中心對稱圖形:

把一個圖形繞著某一個點旋轉(zhuǎn)180,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個圖形叫做中心對稱圖形,這個點就是它的對稱中心。

6、坐標(biāo)系中的中心對稱

兩個點關(guān)于原點對稱時,它們的坐標(biāo)符號相反,

即點P(x,y)關(guān)于原點O的對稱點P(—x,—y)。

初三數(shù)學(xué)知識點總結(jié)范本3

定義

只含有一個未知數(shù),且未知數(shù)的最高次數(shù)是2次的整式方程叫做一元二次方程(quadratice quation of one variable或asingle—variable quadratice quation)。

一元二次方程有三個特點:

(1)含有一個未知數(shù);

(2)且未知數(shù)的最高次數(shù)是2;

(3)是整式方程。要判斷一個方程是否為一元二次方程,先看它是否為整式方程,若是,再對它進(jìn)行整理。如果能整理為ax2+bx+c=0(a0)的形式,則這個方程就為一元二次方程。里面要有等號,且分母里不含未知數(shù)。

補(bǔ)充說明

3、方程的兩根與方程中各數(shù)有如下關(guān)系:X1+X2=—b/a,X1X2=c/a(也稱韋達(dá)定理)。

4、方程兩根為x1,x2時,方程為:x2—(x1+x2)X+x1x2=0(根據(jù)韋達(dá)定理逆推而得)。

5、在系數(shù)a0的情況下,b2—4ac0時有2個不相等的實數(shù)根,b2—4ac=0時有兩個相等的實數(shù)根,b2—4ac0時無實數(shù)根。(在復(fù)數(shù)范圍內(nèi)有兩個復(fù)數(shù)根)。

一般式

ax2+bx+c=0(a、b、c是實數(shù),a0)

例如:x2+2x+1=0

配方式

a(x+b/2a)2=(b2—4ac)/4a

兩根式(交點式)

a(x—x1)(x—x2)=0

初三數(shù)學(xué)知識點總結(jié)范本4

人教版七年級數(shù)學(xué)上冊主要包含了有理數(shù)、整式的加減、一元一次方程、圖形的認(rèn)識初步四個章節(jié)的內(nèi)容.

第一章 有理數(shù)

一、知識框架

二.知識概念

1.有理數(shù):

(1)凡能寫成 形式的數(shù),都是有理數(shù).正整數(shù)、0、負(fù)整數(shù)統(tǒng)稱整數(shù);正分?jǐn)?shù)、負(fù)分?jǐn)?shù)統(tǒng)稱分?jǐn)?shù);整數(shù)和分?jǐn)?shù)統(tǒng)稱有理數(shù).注意:0即不是正數(shù),也不是負(fù)數(shù);-a不一定是負(fù)數(shù),+a也不一定是正數(shù);p不是有理數(shù);

(2)有理數(shù)的分類: ① ②

2.數(shù)軸:數(shù)軸是規(guī)定了原點、正方向、單位長度的一條直線.

3.相反數(shù):

(1)只有符號不同的兩個數(shù),我們說其中一個是另一個的相反數(shù);0的相反數(shù)還是0;

(2)相反數(shù)的和為0 ? a+b=0 ? a、b互為相反數(shù).

4.絕對值:

(1)正數(shù)的絕對值是其本身,0的絕對值是0,負(fù)數(shù)的絕對值是它的相反數(shù);注意:絕對值的意義是數(shù)軸上表示某數(shù)的點離開原點的距離;

(2) 絕對值可表示為: 或 ;絕對值的問題經(jīng)常分類討論;

5.有理數(shù)比大?。?1)正數(shù)的絕對值越大,這個數(shù)越大;(2)正數(shù)永遠(yuǎn)比0大,負(fù)數(shù)永遠(yuǎn)比0小;(3)正數(shù)大于一切負(fù)數(shù);(4)兩個負(fù)數(shù)比大小,絕對值大的反而小;(5)數(shù)軸上的兩個數(shù),右邊的數(shù)總比左邊的數(shù)大;(6)大數(shù)-小數(shù) > 0,小數(shù)-大數(shù) < 0.

6.互為倒數(shù):乘積為1的兩個數(shù)互為倒數(shù);注意:0沒有倒數(shù);若 a≠0,那么 的倒數(shù)是 ;若ab=1? a、b互為倒數(shù);若ab=-1? a、b互為負(fù)倒數(shù).

7. 有理數(shù)加法法則:

(1)同號兩數(shù)相加,取相同的符號,并把絕對值相加;

(2)異號兩數(shù)相加,取絕對值較大的符號,并用較大的絕對值減去較小的絕對值;

(3)一個數(shù)與0相加,仍得這個數(shù).

8.有理數(shù)加法的運(yùn)算律:

(1)加法的交換律:a+b=b+a ;(2)加法的結(jié)合律:(a+b)+c=a+(b+c).

9.有理數(shù)減法法則:減去一個數(shù),等于加上這個數(shù)的相反數(shù);即a-b=a+(-b).

10 有理數(shù)乘法法則:

(1)兩數(shù)相乘,同號為正,異號為負(fù),并把絕對值相乘;

(2)任何數(shù)同零相乘都得零;

(3)幾個數(shù)相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負(fù)因式的個數(shù)決定.

11 有理數(shù)乘法的運(yùn)算律:

(1)乘法的交換律:ab=ba;(2)乘法的結(jié)合律:(ab)c=a(bc);

(3)乘法的分配律:a(b+c)=ab+ac .

12.有理數(shù)除法法則:除以一個數(shù)等于乘以這個數(shù)的倒數(shù);注意:零不能做除數(shù), .

13.有理數(shù)乘方的法則:

(1)正數(shù)的任何次冪都是正數(shù);

(2)負(fù)數(shù)的奇次冪是負(fù)數(shù);負(fù)數(shù)的偶次冪是正數(shù);注意:當(dāng)n為正奇數(shù)時: (-a)n=-an或(a -b)n=-(b-a)n , 當(dāng)n為正偶數(shù)時: (-a)n =an 或 (a-b)n=(b-a)n .

14.乘方的定義:

(1)求相同因式積的運(yùn)算,叫做乘方;

(2)乘方中,相同的因式叫做底數(shù),相同因式的個數(shù)叫做指數(shù),乘方的結(jié)果叫做冪;

15.科學(xué)記數(shù)法:把一個大于10的數(shù)記成a×10n的形式,其中a是整數(shù)數(shù)位只有一位的數(shù),這種記數(shù)法叫科學(xué)記數(shù)法.

16.近似數(shù)的精確位:一個近似數(shù),四舍五入到那一位,就說這個近似數(shù)的精確到那一位.

17.有效數(shù)字:從左邊第一個不為零的數(shù)字起,到精確的位數(shù)止,所有數(shù)字,都叫這個近似數(shù)的有效數(shù)字.

18.混合運(yùn)算法則:先乘方,后乘除,最后加減.

本章內(nèi)容要求學(xué)生正確認(rèn)識有理數(shù)的概念,在實際生活和學(xué)習(xí)數(shù)軸的基礎(chǔ)上,理解正負(fù)數(shù)、相反數(shù)、絕對值的意義所在。重點利用有理數(shù)的運(yùn)算法則解決實際問題.

體驗數(shù)學(xué)發(fā)展的一個重要原因是生活實際的需要.激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,教師培養(yǎng)學(xué)生的觀察、歸納與概括的能力,使學(xué)生建立正確的數(shù)感和解決實際問題的能力。教師在講授本章內(nèi)容時,應(yīng)該多創(chuàng)設(shè)情境,充分體現(xiàn)學(xué)生學(xué)習(xí)的主體性地位。

第二章 整式的加減

一.知識框架

二.知識概念

1.單項式:在代數(shù)式中,若只含有乘法(包括乘方)運(yùn)算?;螂m含有除法運(yùn)算,但除式中不含字母的一類代數(shù)式叫單項式.

2.單項式的系數(shù)與次數(shù):單項式中不為零的數(shù)字因數(shù),叫單項式的數(shù)字系數(shù),簡稱單項式的系數(shù);系數(shù)不為零時,單項式中所有字母指數(shù)的和,叫單項式的次數(shù).

3.多項式:幾個單項式的和叫多項式.

4.多項式的項數(shù)與次數(shù):多項式中所含單項式的個數(shù)就是多項式的項數(shù),每個單項式叫多項式的項;多項式里,次數(shù)最高項的次數(shù)叫多項式的次數(shù)。

通過本章學(xué)習(xí),應(yīng)使學(xué)生達(dá)到以下學(xué)習(xí)目標(biāo):

1. 理解并掌握單項式、多項式、整式等概念,弄清它們之間的區(qū)別與聯(lián)系。

2. 理解同類項概念,掌握合并同類項的方法,掌握去括號時符號的變化規(guī)律,能正確地進(jìn)行同類項的合并和去括號。在準(zhǔn)確判斷、正確合并同類項的基礎(chǔ)上,進(jìn)行整式的加減運(yùn)算。

3. 理解整式中的字母表示數(shù),整式的加減運(yùn)算建立在數(shù)的運(yùn)算基礎(chǔ)上;理解合并同類項、去括號的依據(jù)是分配律;理解數(shù)的運(yùn)算律和運(yùn)算性質(zhì)在整式的加減運(yùn)算中仍然成立。

4.能夠分析實際問題中的數(shù)量關(guān)系,并用還有字母的式子表示出來。

在本章學(xué)習(xí)中,教師可以通過讓學(xué)生小組討論、合作學(xué)習(xí)等方式,經(jīng)歷概念的形成過程,初步培養(yǎng)學(xué)生觀察、分析、抽象、概括等思維能力和應(yīng)用意識。

第三章 一元一次方程

一.知識框架

二.知識概念

1.一元一次方程:只含有一個未知數(shù),并且未知數(shù)的次數(shù)是1,并且含未知數(shù)項的系數(shù)不是零的整式方程是一元一次方程.

2.一元一次方程的標(biāo)準(zhǔn)形式: ax+b=0(x是未知數(shù),a、b是已知數(shù),且a≠0).

3.一元一次方程解法的一般步驟: 整理方程 …… 去分母 …… 去括號 …… 移項 …… 合并同類項 …… 系數(shù)化為1 …… (檢驗方程的解).

4.列一元一次方程解應(yīng)用題:

(1)讀題分析法:………… 多用于“和,差,倍,分問題”

仔細(xì)讀題,找出表示相等關(guān)系的關(guān)鍵字,例如:“大,小,多,少,是,共,合,為,完成,增加,減少,配套-----”,利用這些關(guān)鍵字列出文字等式,并且據(jù)題意設(shè)出未知數(shù),最后利用題目中的量與量的關(guān)系填入代數(shù)式,得到方程.

(2)畫圖分析法: ………… 多用于“行程問題”

利用圖形分析數(shù)學(xué)問題是數(shù)形結(jié)合思想在數(shù)學(xué)中的體現(xiàn),仔細(xì)讀題,依照題意畫出有關(guān)圖形,使圖形各部分具有特定的含義,通過圖形找相等關(guān)系是解決問題的關(guān)鍵,從而取得布列方程的依據(jù),最后利用量與量之間的關(guān)系(可把未知數(shù)看做已知量),填入有關(guān)的代數(shù)式是獲得方程的基礎(chǔ).

11.列方程解應(yīng)用題的常用公式:

(1)行程問題: 距離=速度·時間 ;

(2)工程問題: 工作量=工效·工時 ;

(3)比率問題: 部分=全體·比率 ;

(4)順逆流問題: 順流速度=靜水速度+水流速度,逆流速度=靜水速度-水流速度;

(5)商品價格問題: 售價=定價·折· ,利潤=售價-成本, ;

(6)周長、面積、體積問題:C圓=2πR,S圓=πR2,C長方形=2(a+b),S長方形=ab, C正方形=4a,

S正方形=a2,S環(huán)形=π(R2-r2),V長方體=abc ,V正方體=a3,V圓柱=πR2h ,V圓錐= πR2h.

本章內(nèi)容是代數(shù)學(xué)的核心,也是所有代數(shù)方程的基礎(chǔ)。豐富多彩的問題情境和解決問題的快樂很容易激起學(xué)生對數(shù)學(xué)的樂趣,所以要注意引導(dǎo)學(xué)生從身邊的問題研究起,進(jìn)行有效的數(shù)學(xué)活動和合作交流,讓學(xué)生在主動學(xué)習(xí)、探究學(xué)習(xí)的過程中獲得知識,提升能力,體會數(shù)學(xué)思想方法。

初三數(shù)學(xué)知識點總結(jié)范本5

知識點1:一元二次方程的基本概念

1、一元二次方程3x2+5x-2=0的常數(shù)項是-2。

2、一元二次方程3x2+4x-2=0的一次項系數(shù)為4,常數(shù)項是-2。

3、一元二次方程3x2-5x-7=0的二次項系數(shù)為3,常數(shù)項是-7。

4、把方程3x(x-1)-2=-4x化為一般式為3x2-x-2=0。

知識點2:直角坐標(biāo)系與點的位置

1、直角坐標(biāo)系中,點A(3,0)在y軸上。

2、直角坐標(biāo)系中,x軸上的任意點的橫坐標(biāo)為0。

3、直角坐標(biāo)系中,點A(1,1)在第一象限。

4、直角坐標(biāo)系中,點A(-2,3)在第四象限。

5、直角坐標(biāo)系中,點A(-2,1)在第二象限。

知識點3:已知自變量的值求函數(shù)值

1、當(dāng)x=2時,函數(shù)y=的值為1。

2、當(dāng)x=3時,函數(shù)y=的值為1。

3、當(dāng)x=-1時,函數(shù)y=的值為1。

知識點4:基本函數(shù)的概念及性質(zhì)

1、函數(shù)y=-8x是一次函數(shù)。

2、函數(shù)y=4x+1是正比例函數(shù)。

3、函數(shù)是反比例函數(shù)。

4、拋物線y=-3(x-2)2-5的開口向下。

5、拋物線y=4(x-3)2-10的對稱軸是x=3。

6、拋物線的頂點坐標(biāo)是(1,2)。

7、反比例函數(shù)的圖象在第一、三象限。

知識點5:數(shù)據(jù)的平均數(shù)中位數(shù)與眾數(shù)

1、數(shù)據(jù)13,10,12,8,7的平均數(shù)是10。

2、數(shù)據(jù)3,4,2,4,4的眾數(shù)是4。

3、數(shù)據(jù)1,2,3,4,5的中位數(shù)是3。

知識點6:特殊三角函數(shù)值

1、cos30°=。

2、sin260°+cos260°=1。

3、2sin30°+tan45°=2。

4、tan45°=1。

5、cos60°+sin30°=1。

知識點7:圓的基本性質(zhì)

1、半圓或直徑所對的圓周角是直角。

2、任意一個三角形一定有一個外接圓。

3、在同一平面內(nèi),到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓。

4、在同圓或等圓中,相等的圓心角所對的弧相等。

5、同弧所對的圓周角等于圓心角的一半。

6、同圓或等圓的'半徑相等。

7、過三個點一定可以作一個圓。

8、長度相等的兩條弧是等弧。

9、在同圓或等圓中,相等的圓心角所對的弧相等。

10、經(jīng)過圓心平分弦的直徑垂直于弦。

知識點8:直線與圓的位置關(guān)系

1、直線與圓有唯一公共點時,叫做直線與圓相切。

2、三角形的外接圓的圓心叫做三角形的外心。

3、弦切角等于所夾的弧所對的圓心角。

4、三角形的內(nèi)切圓的圓心叫做三角形的內(nèi)心。

5、垂直于半徑的直線必為圓的切線。

6、過半徑的外端點并且垂直于半徑的直線是圓的切線。

7、垂直于半徑的直線是圓的切線。

8、圓的切線垂直于過切點的半徑。


221381
Z范文網(wǎng)、范文協(xié)會網(wǎng)、范文檔案館、