函數(shù)是初中數(shù)學一個非常重要的知識點,那么學習函數(shù)時,有哪些知識點是必須要掌握的呢?下面是小編整理的初中數(shù)學函數(shù)知識點,歡迎大家閱讀分享借鑒,希望對大家有所幫助,也希望大家喜歡。
初中數(shù)學函數(shù)知識點1
自變量x和因變量y有如下關系:
y=kx+b
則此時稱y是x的一次函數(shù)。
特別地,當b=0時,y是x的正比例函數(shù)。即:y=kx (k為常數(shù),k≠0)
二、一次函數(shù)的性質:
1.y的變化值與對應的x的變化值成正比例,比值為k 即:y=kx+b (k為任意不為零的實數(shù) b取任何實數(shù))
2.當x=0時,b為函數(shù)在y軸上的截距。
三、一次函數(shù)的圖像及性質:
1.作法與圖形:通過如下3個步驟
(1)列表;
(2)描點;
(3)連線,可以作出一次函數(shù)的圖像——一條直線。因此,作一次函數(shù)的圖像只需知道2點,并連成直線即可。(通常找函數(shù)圖像與x軸和y軸的交點)
2.性質:(1)在一次函數(shù)上的任意一點P(x,y),都滿足等式:y=kx+b。(2)一次函數(shù)與y軸交點的坐標總是(0,b),與x軸總是交于(-b/k,0)正比例函數(shù)的圖像總是過原點。
3.k,b與函數(shù)圖像所在象限:
當k>0時,直線必通過一、三象限,y隨x的增大而增大;
當k<0時,直線必通過二、四象限,y隨x的增大而減小。
當b>0時,直線必通過一、二象限;
當b=0時,直線通過原點
當b<0時,直線必通過三、四象限。
特別地,當b=O時,直線通過原點O(0,0)表示的是正比例函數(shù)的圖像。這時,當k>0時,直線只通過一、三象限;當k<0時,直線只通過二、四象限。
四、確定一次函數(shù)的表達式:
已知點A(x1,y1);B(x2,y2),請確定過點A、B的一次函數(shù)的表達式。
(1)設一次函數(shù)的表達式(也叫解析式)為y=kx+b。
(2)因為在一次函數(shù)上的任意一點P(x,y),都滿足等式y(tǒng)=kx+b。所以可以列出2個方程:y1=kx1+b …… ① 和 y2=kx2+b …… ②
(3)解這個二元一次方程,得到k,b的值。
(4)最后得到一次函數(shù)的表達式。
五、一次函數(shù)在生活中的應用:
1.當時間t一定,距離s是速度v的一次函數(shù)。s=vt。
2.當水池抽水速度f一定,水池中水量g是抽水時間t的一次函數(shù)。設水池中原有水量S。g=S-ft。
六、常用公式:
1.求函數(shù)圖像的k值:(y1-y2)/(x1-x2)
2.求與x軸平行線段的中點:|x1-x2|/2
3.求與y軸平行線段的中點:|y1-y2|/2
4.求任意線段的長:√(x1-x2)^2+(y1-y2)^2 (注:根號下(x1-x2)與(y1-y2)的平方和)
初中數(shù)學函數(shù)知識點2
正比例函數(shù)及性質
一般地,形如y=kx(k是常數(shù),k≠0)的函數(shù)叫做正比例函數(shù),其中k叫做比例系數(shù).
注:正比例函數(shù)一般形式 y=kx (k不為零) ① k不為零 ② x指數(shù)為1 ③ b取零
當k>0時,直線y=kx經(jīng)過三、一象限,從左向右上升,即隨x的增大y也增大;
當k<0時,直線y=kx經(jīng)過二、四象限,從左向右下降,即隨x增大y反而減小.
(1) 解析式:y=kx(k是常數(shù),k≠0)
(2) 必過點:(0,0)、(1,k)
(3) 走向:k>0時,圖像經(jīng)過一、三象限;k<0時,圖像經(jīng)過二、四象限
(4) 增減性:k>0,y隨x的增大而增大;k<0,y隨x增大而減小
(5) 傾斜度:|k|越大,越接近y軸;|k|越小,越接近x軸
3、一次函數(shù)及性質
一般地,形如y=kx+b(k,b是常數(shù),k≠0),那么y叫做x的一次函數(shù).當b=0時,y=kx+b即y=kx,所以說正比例函數(shù)是一種特殊的一次函數(shù).
注:一次函數(shù)一般形式 y=kx b (k不為零) ① k不為零 ②x指數(shù)為1 ③ b取任意實數(shù)
一次函數(shù)y=kx b的圖象是經(jīng)過(0,b)和(-k/b,0)兩點的一條直線,我們稱它為直線y=kx b,它可以看作由直線y=kx平移|b|個單位長度得到.(當b>0時,向上平移;當b<0時,向下平移)
(1)解析式:y=kx b(k、b是常數(shù),k0)
(2)必過點:(0,b)和(-k/b,0)
(3)走向:
k>0,圖象經(jīng)過第一、三象限;k<0,圖象經(jīng)過第二、四象限
b>0,圖象經(jīng)過第一、二象限;b<0,圖象經(jīng)過第三、四象限
(4)增減性:k>0,y隨x的增大而增大;k<0,y隨x增大而減小.
(5)傾斜度:|k|越大,圖象越接近于y軸;|k|越小,圖象越接近于x軸.
(6)圖像的平移:
當b>0時,將直線y=kx的圖象向上平移b個單位;
當b<0時,將直線y=kx的圖象向下平移b個單位.
初中數(shù)學一次函數(shù)知識點匯總
4、一次函數(shù)y=kx+b的圖象的畫法.
根據(jù)幾何知識:經(jīng)過兩點能畫出一條直線,并且只能畫出一條直線,即兩點確定一條直線,所以畫一次函數(shù)的圖象時,只要先描出兩點,再連成直線即可.
一般情況下:是先選取它與兩坐標軸的交點:(0,b),(-k/b,0).即橫坐標或縱坐標為0的點。
初中數(shù)學一次函數(shù)知識點匯總
5、正比例函數(shù)與一次函數(shù)之間的關系
一次函數(shù)y=kx+b的圖象是一條直線,它可以看作是由直線y=kx平移|b|個單位長度而得
到(當b>0時,向上平移;當b<0時,向下平移)
6、正比例函數(shù)和一次函數(shù)及性質
7、用待定系數(shù)法確定函數(shù)解析式的一般步驟:
(1)根據(jù)已知條件寫出含有待定系數(shù)的函數(shù)關系式;
(2)將x、y的幾對值或圖象上的幾個點的坐標代入上述函數(shù)關系式中得到以待定系數(shù)為未知數(shù)的方程;
(3)解方程得出未知系數(shù)的值;
(4)將求出的待定系數(shù)代回所求的函數(shù)關系式中得出所求函數(shù)的解析式。
初中數(shù)學函數(shù)知識點3
I.定義與定義表達式
一般地,自變量x和因變量y之間存在如下關系:y=ax^2+bx+c
(a,b,c為常數(shù),a≠0,且a決定函數(shù)的開口方向,a>0時,開口方向向上,a<0時,開口方向向下,IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大.)則稱y為x的二次函數(shù)。
二次函數(shù)表達式的右邊通常為二次三項式。
II.二次函數(shù)的三種表達式
一般式:y=ax^2+bx+c(a,b,c為常數(shù),a≠0)
頂點式:y=a(x-h)^2+k[拋物線的頂點P(h,k)]
交點式:y=a(x-x)(x-x)[僅限于與x軸有交點A(x,0)和B(x,0)的拋物線]
注:在3種形式的互相轉化中,有如下關系:
h=-b/2a k=(4ac-b^2)/4a x,x=(-b±√b^2-4ac)/2a
III.二次函數(shù)的圖像
在平面直角坐標系中作出二次函數(shù)y=x^2的圖像,可以看出,二次函數(shù)的.圖像是一條拋物線。
IV.拋物線的性質
1.拋物線是軸對稱圖形。對稱軸為直線x=-b/2a。
對稱軸與拋物線唯一的交點為拋物線的頂點P。特別地,當b=0時,拋物線的對稱軸是y軸(即直線x=0)
2.拋物線有一個頂點P,坐標為:P(-b/2a,(4ac-b^2)/4a)當-b/2a=0時,P在y軸上;當Δ=b^2-4ac=0時,P在x軸上。
3.二次項系數(shù)a決定拋物線的開口方向和大小。
當a>0時,拋物線向上開口;當a<0時,拋物線向下開口。|a|越大,則拋物線的開口越小。
4.一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置。
當a與b同號時(即ab>0),對稱軸在y軸左;
當a與b異號時(即ab<0),對稱軸在y軸右。
5.常數(shù)項c決定拋物線與y軸交點。
拋物線與y軸交于(0,c)
6.拋物線與x軸交點個數(shù)
Δ=b^2-4ac>0時,拋物線與x軸有2個交點。
Δ=b^2-4ac=0時,拋物線與x軸有1個交點。
Δ=b^2-4ac<0時,拋物線與x軸沒有交點。X的取值是虛數(shù)(x=-b±√b^2-4ac的值的相反數(shù),乘上虛數(shù)i,整個式子除以2a)
V.二次函數(shù)與一元二次方程
特別地,二次函數(shù)(以下稱函數(shù))y=ax^2+bx+c,
當y=0時,二次函數(shù)為關于x的一元二次方程(以下稱方程),即ax^2+bx+c=0
此時,函數(shù)圖像與x軸有無交點即方程有無實數(shù)根。函數(shù)與x軸交點的橫坐標即為方程的根。
1.二次函數(shù)y=ax^2,y=a(x-h)^2,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a≠0)的圖象形狀相同,只是位置不同,它們的頂點坐標及對稱軸如下表:
當h>0時,y=a(x-h)^2的圖象可由拋物線y=ax^2向右平行移動h個單位得到,
當h<0時,則向左平行移動|h|個單位得到.
當h>0,k>0時,將拋物線y=ax^2向右平行移動h個單位,再向上移動k個單位,就可以得到y(tǒng)=a(x-h)^2+k的圖象;
當h>0,k<0時,將拋物線y=ax^2向右平行移動h個單位,再向下移動|k|個單位可得到y(tǒng)=a(x-h)^2+k的圖象;
當h<0,k>0時,將拋物線向左平行移動|h|個單位,再向上移動k個單位可得到y(tǒng)=a(x-h)^2+k的圖象;
當h<0,k<0時,將拋物線向左平行移動|h|個單位,再向下移動|k|個單位可得到y(tǒng)=a(x-h)^2+k的圖象;
因此,研究拋物線y=ax^2+bx+c(a≠0)的圖象,通過配方,將一般式化為y=a(x-h)^2+k的形式,可確定其頂點坐標、對稱軸,拋物線的大體位置就很清楚了.這給畫圖象提供了方便.
2.拋物線y=ax^2+bx+c(a≠0)的圖象:當a>0時,開口向上,當a<0時開口向下,對稱軸是直線x=-b/2a,頂點坐標是(-b/2a,[4ac-b^2]/4a).
3.拋物線y=ax^2+bx+c(a≠0),若a>0,當x≤-b/2a時,y隨x的增大而減小;當x≥-b/2a時,y隨x的增大而增大.若a<0,當x≤-b/2a時,y隨x的增大而增大;當x≥-b/2a時,y隨x的增大而減小.
4.拋物線y=ax^2+bx+c的圖象與坐標軸的交點:
(1)圖象與y軸一定相交,交點坐標為(0,c);
(2)當△=b^2-4ac>0,圖象與x軸交于兩點A(x,0)和B(x,0),其中的x1,x2是一元二次方程ax^2+bx+c=0
(a≠0)的兩根.這兩點間的距離AB=|x-x|
當△=0.圖象與x軸只有一個交點;
當△<0.圖象與x軸沒有交點.當a>0時,圖象落在x軸的上方,x為任何實數(shù)時,都有y>0;當a<0時,圖象落在x軸的下方,x為任何實數(shù)時,都有y<0.
5.拋物線y=ax^2+bx+c的最值:如果a>0(a<0),則當x=-b/2a時,y最小(大)值=(4ac-b^2)/4a.
頂點的橫坐標,是取得最值時的自變量值,頂點的縱坐標,是最值的取值.
6.用待定系數(shù)法求二次函數(shù)的解析式
(1)當題給條件為已知圖象經(jīng)過三個已知點或已知x、y的三對對應值時,可設解析式為一般形式:
y=ax^2+bx+c(a≠0).
(2)當題給條件為已知圖象的頂點坐標或對稱軸時,可設解析式為頂點式:y=a(x-h)^2+k(a≠0).
(3)當題給條件為已知圖象與x軸的兩個交點坐標時,可設解析式為兩根式:y=a(x-x)(x-x)(a≠0).
7.二次函數(shù)知識很容易與其它知識綜合應用,而形成較為復雜的綜合題目。因此,以二次函數(shù)知識為主的綜合性題目是中考的熱點考題,往往以大題形式出現(xiàn).