中文字幕人妻色偷偷久久_天天鲁一鲁摸一摸爽一爽_最新亚洲人成网站在线观看_999久久久免费精品国产_久久精品丝袜高跟鞋

歡迎訪一網(wǎng)寶!您身邊的知識(shí)小幫手,專注做最新的學(xué)習(xí)參考資料!

高中數(shù)學(xué)學(xué)業(yè)水平考知識(shí)點(diǎn)總結(jié)

一網(wǎng)寶 分享 時(shí)間: 加入收藏 我要投稿 點(diǎn)贊

在復(fù)習(xí)高中數(shù)學(xué)水平考時(shí),學(xué)生們應(yīng)該懂得怎樣去總結(jié)知識(shí)點(diǎn)。下面就是小編給大家?guī)淼母咧袛?shù)學(xué)學(xué)業(yè)水平考知識(shí)點(diǎn),希望能幫助到大家!

高中數(shù)學(xué)學(xué)業(yè)水平考知識(shí)點(diǎn)1

1、圓的定義

平面內(nèi)到一定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合叫圓,定點(diǎn)為圓心,定長(zhǎng)為圓的半徑。

2、圓的方程

(1)標(biāo)準(zhǔn)方程,圓心,半徑為r;

(2)一般方程

當(dāng)時(shí),方程表示圓,此時(shí)圓心為,半徑為

當(dāng)時(shí),表示一個(gè)點(diǎn);當(dāng)時(shí),方程不表示任何圖形。

(3)求圓方程的方法:

一般都采用待定系數(shù)法:先設(shè)后求。確定一個(gè)圓需要三個(gè)獨(dú)立條件,若利用圓的標(biāo)準(zhǔn)方程,

需求出a,b,r;若利用一般方程,需要求出D,E,F;

另外要注意多利用圓的幾何性質(zhì):如弦的中垂線必經(jīng)過原點(diǎn),以此來確定圓心的位置。

3、直線與圓的位置關(guān)系

直線與圓的位置關(guān)系有相離,相切,相交三種情況:

(1)設(shè)直線,圓,圓心到l的距離為,則有

(2)過圓外一點(diǎn)的切線:

①k不存在,驗(yàn)證是否成立

②k存在,設(shè)點(diǎn)斜式方程,用圓心到該直線距離=半徑,求解k,得到方程【一定兩解】

(3)過圓上一點(diǎn)的切線方程:圓(x-a)2+(y-b)2=r2,圓上一點(diǎn)為(x0,y0),則過此點(diǎn)的切線方程為(x0-a)(x-a)+(y0-b)(y-b)=r2

4、圓與圓的位置關(guān)系

通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定。

設(shè)圓

兩圓的位置關(guān)系常通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定。

當(dāng)時(shí)兩圓外離,此時(shí)有公切線四條;

當(dāng)時(shí)兩圓外切,連心線過切點(diǎn),有外公切線兩條,內(nèi)公切線一條;

當(dāng)時(shí)兩圓相交,連心線垂直平分公共弦,有兩條外公切線;

當(dāng)時(shí),兩圓內(nèi)切,連心線經(jīng)過切點(diǎn),只有一條公切線;

當(dāng)時(shí),兩圓內(nèi)含;當(dāng)時(shí),為同心圓。

注意:已知圓上兩點(diǎn),圓心必在中垂線上;已知兩圓相切,兩圓心與切點(diǎn)共線

圓的輔助線一般為連圓心與切線或者連圓心與弦中點(diǎn)

高中數(shù)學(xué)學(xué)業(yè)水平考知識(shí)點(diǎn)2

1、導(dǎo)數(shù)的定義:在點(diǎn)處的導(dǎo)數(shù)記作.

2.導(dǎo)數(shù)的幾何物理意義:曲線在點(diǎn)處切線的斜率

①k=f/(x0)表示過曲線y=f(x)上P(x0,f(x0))切線斜率。V=s/(t)表示即時(shí)速度。a=v/(t)表示加速度。

3.常見函數(shù)的導(dǎo)數(shù)公式:①;②;③;

⑤;⑥;⑦;⑧。

4.導(dǎo)數(shù)的四則運(yùn)算法則:

5.導(dǎo)數(shù)的應(yīng)用:

(1)利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性:設(shè)函數(shù)在某個(gè)區(qū)間內(nèi)可導(dǎo),如果,那么為增函數(shù);如果,那么為減函數(shù);

注意:如果已知為減函數(shù)求字母取值范圍,那么不等式恒成立。

(2)求極值的步驟:

①求導(dǎo)數(shù);

②求方程的根;

③列表:檢驗(yàn)在方程根的左右的符號(hào),如果左正右負(fù),那么函數(shù)在這個(gè)根處取得極大值;如果左負(fù)右正,那么函數(shù)在這個(gè)根處取得極小值;

(3)求可導(dǎo)函數(shù)值與最小值的步驟:

ⅰ求的根;ⅱ把根與區(qū)間端點(diǎn)函數(shù)值比較,的為值,最小的是最小值。

高中數(shù)學(xué)學(xué)業(yè)水平考知識(shí)點(diǎn)3

集合有關(guān)概念

1、集合的含義:某些指定的對(duì)象集在一起就成為一個(gè)集合,其中每一個(gè)對(duì)象叫元素。

2、集合的中元素的三個(gè)特性:

1.元素的確定性;

2.元素的互異性;

3.元素的無序性

說明:

(1)對(duì)于一個(gè)給定的集合,集合中的元素是確定的,任何一個(gè)對(duì)象或者是或者不是這個(gè)給定的集合的元素。

(2)任何一個(gè)給定的集合中,任何兩個(gè)元素都是不同的對(duì)象,相同的對(duì)象歸入一個(gè)集合時(shí),僅算一個(gè)元素。

(3)集合中的元素是平等的,沒有先后順序,因此判定兩個(gè)集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。

(4)集合元素的三個(gè)特性使集合本身具有了確定性和整體性。

3、集合的表示:{…}如{我校的籃球隊(duì)員},{太平洋,大西洋,印度洋,北冰洋}

1.用拉丁字母表示集合:A={我校的籃球隊(duì)員},B={1,2,3,4,5}

2.集合的表示方法:列舉法與描述法。

注意啊:常用數(shù)集及其記法:

非負(fù)整數(shù)集(即自然數(shù)集)記作:N

正整數(shù)集N_或N+整數(shù)集Z有理數(shù)集Q實(shí)數(shù)集R

關(guān)于“屬于”的概念

集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說a屬于集合A記作a∈A,相反,a不屬于集合A記作a?A

列舉法:把集合中的元素一一列舉出來,然后用一個(gè)大括號(hào)括上。

描述法:將集合中的元素的公共屬性描述出來,寫在大括號(hào)內(nèi)表示集合的方法。用確定的條件表示某些對(duì)象是否屬于這個(gè)集合的方法。

①語言描述法:例:{不是直角三角形的三角形}

②數(shù)學(xué)式子描述法:例:不等式x-3>2的'解集是{x?Rx-3>2}或{_-3>2}

4、集合的分類:

1.有限集含有有限個(gè)元素的集合

2.無限集含有無限個(gè)元素的集合

3.空集不含任何元素的集合例:{_2=-5}

高中數(shù)學(xué)學(xué)業(yè)水平考知識(shí)點(diǎn)4

集合的分類

(1)按元素屬性分類,如點(diǎn)集,數(shù)集。

(2)按元素的個(gè)數(shù)多少,分為有/無限集

關(guān)于集合的概念:

(1)確定性:作為一個(gè)集合的元素,必須是確定的,這就是說,不能確定的對(duì)象就不能構(gòu)成集合,也就是說,給定一個(gè)集合,任何一個(gè)對(duì)象是不是這個(gè)集合的元素也就確定了。

(2)互異性:對(duì)于一個(gè)給定的集合,集合中的元素一定是不同的(或說是互異的),這就是說,集合中的任何兩個(gè)元素都是不同的對(duì)象,相同的對(duì)象歸入同一個(gè)集合時(shí)只能算作集合的一個(gè)元素。

(3)無序性:判斷一些對(duì)象時(shí)候構(gòu)成集合,關(guān)鍵在于看這些對(duì)象是否有明確的標(biāo)準(zhǔn)。

集合可以根據(jù)它含有的元素的個(gè)數(shù)分為兩類:

含有有限個(gè)元素的集合叫做有限集,含有無限個(gè)元素的集合叫做無限集。

非負(fù)整數(shù)全體構(gòu)成的集合,叫做自然數(shù)集,記作N;

在自然數(shù)集內(nèi)排除0的集合叫做正整數(shù)集,記作N+或N_;

整數(shù)全體構(gòu)成的集合,叫做整數(shù)集,記作Z;

有理數(shù)全體構(gòu)成的集合,叫做有理數(shù)集,記作Q;(有理數(shù)是整數(shù)和分?jǐn)?shù)的統(tǒng)稱,一切有理數(shù)都可以化成分?jǐn)?shù)的形式。)

實(shí)數(shù)全體構(gòu)成的集合,叫做實(shí)數(shù)集,記作R。(包括有理數(shù)和無理數(shù)。其中無理數(shù)就是無限不循環(huán)小數(shù),有理數(shù)就包括整數(shù)和分?jǐn)?shù)。數(shù)學(xué)上,實(shí)數(shù)直觀地定義為和數(shù)軸上的點(diǎn)一一對(duì)應(yīng)的數(shù)。)

1.列舉法:如果一個(gè)集合是有限集,元素又不太多,常常把集合的所有元素都列舉出來,寫在花括號(hào)“{}”內(nèi)表示這個(gè)集合,例如,由兩個(gè)元素0,1構(gòu)成的集合可表示為{0,1}.

有些集合的元素較多,元素的排列又呈現(xiàn)一定的規(guī)律,在不致于發(fā)生誤解的情況下,也可以列出幾個(gè)元素作為代表,其他元素用省略號(hào)表示。

例如:不大于100的自然數(shù)的全體構(gòu)成的集合,可表示為{0,1,2,3,…,100}.

無限集有時(shí)也用上述的列舉法表示,例如,自然數(shù)集N可表示為{1,2,3,…,n,…}.

2.描述法:一種更有效地描述集合的方法,是用集合中元素的特征性質(zhì)來描述。

例如:正偶數(shù)構(gòu)成的集合,它的每一個(gè)元素都具有性質(zhì):“能被2整除,且大于0”

而這個(gè)集合外的其他元素都不具有這種性質(zhì),因此,我們可以用上述性質(zhì)把正偶數(shù)集合表示為

{x∈R│x能被2整除,且大于0}或{x∈R│x=2n,n∈N+},

大括號(hào)內(nèi)豎線左邊的X表示這個(gè)集合的任意一個(gè)元素,元素X從實(shí)數(shù)集合中取值,在豎線右邊寫出只有集合內(nèi)的元素x才具有的性質(zhì)。

一般地,如果在集合I中,屬于集合A的任意一個(gè)元素x都具有性質(zhì)p(x),而不屬于集合A的元素都不具有的性質(zhì)p(x),則性質(zhì)p(x)叫做集合A的一個(gè)特征性質(zhì)。于是,集合A可以用它的性質(zhì)p(x)描述為{x∈I│p(x)}

它表示集合A是由集合I中具有性質(zhì)p(x)的所有元素構(gòu)成的,這種表示集合的方法,叫做特征性質(zhì)描述法,簡(jiǎn)稱描述法。

例如:集合A={x∈R│x2-1=0}的特征是X2-1=0

高中數(shù)學(xué)學(xué)業(yè)水平考知識(shí)點(diǎn)5

函數(shù)的表示方法

1.函數(shù)的三種表示方法列表法圖象法解析法

2.分段函數(shù):定義域的不同部分,有不同的對(duì)應(yīng)法則的函數(shù)。注意兩點(diǎn):①分段函數(shù)是一個(gè)函數(shù),不要誤認(rèn)為是幾個(gè)函數(shù)。②分段函數(shù)的定義域是各段定義域的并集,值域是各段值域的并集。

考點(diǎn)四、求定義域的幾種情況

①若f(x)是整式,則函數(shù)的定義域是實(shí)數(shù)集R;

②若f(x)是分式,則函數(shù)的定義域是使分母不等于0的實(shí)數(shù)集;

③若f(x)是二次根式,則函數(shù)的定義域是使根號(hào)內(nèi)的式子大于或等于0的實(shí)數(shù)集合;

④若f(x)是對(duì)數(shù)函數(shù),真數(shù)應(yīng)大于零。

⑤.因?yàn)榱愕牧愦蝺鐩]有意義,所以底數(shù)和指數(shù)不能同時(shí)為零。

⑥若f(x)是由幾個(gè)部分的數(shù)學(xué)式子構(gòu)成的,則函數(shù)的定義域是使各部分式子都有意義的實(shí)數(shù)集合;

⑦若f(x)是由實(shí)際問題抽象出來的函數(shù),則函數(shù)的定義域應(yīng)符合實(shí)際問題

高中數(shù)學(xué)水平考知識(shí)點(diǎn)歸納相關(guān)文章:

1.

2.高中物理水平考知識(shí)點(diǎn)匯總

3.高中歷史水平考知識(shí)點(diǎn)總結(jié)

4.高二數(shù)學(xué)知識(shí)點(diǎn)精選總結(jié)【五篇】

5.人教版數(shù)學(xué)高一知識(shí)點(diǎn)匯總

6.高考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

7.2020最全高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納

8.人教版高一數(shù)學(xué)知識(shí)點(diǎn)整理五篇

9.高三數(shù)學(xué)必考知識(shí)點(diǎn)復(fù)習(xí)梳理5篇精選

10.2020高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納三篇

221381
領(lǐng)取福利

微信掃碼領(lǐng)取福利

微信掃碼分享

Z范文網(wǎng)范文協(xié)會(huì)網(wǎng)、范文檔案館、