中文字幕人妻色偷偷久久_天天鲁一鲁摸一摸爽一爽_最新亚洲人成网站在线观看_999久久久免费精品国产_久久精品丝袜高跟鞋

歡迎訪一網(wǎng)寶!您身邊的知識(shí)小幫手,專注做最新的學(xué)習(xí)參考資料!

換位思考高三作文800字

一網(wǎng)寶 分享 時(shí)間: 加入收藏 我要投稿 點(diǎn)贊

學(xué)無(wú)止境,高中是人生成長(zhǎng)變化最快的階段,所以應(yīng)該用心去想,去做好每件事。這里給大家分享一些高三下冊(cè)數(shù)學(xué)理科期末試卷及答案,歡迎閱讀!

第Ⅰ卷

一、選擇題:本大題共12小題,每小題5分,在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)符合題目要求。

1.設(shè)全集,集合,則()

A.{2,4}B.{2,4,6}C.{0,2,4}D.{0,2,4,6}

2.若復(fù)數(shù)是純虛數(shù),則實(shí)數(shù)()

A.±1B.C.0D.1

3.已知為等比數(shù)列,若,則()

A.10B.20C.60D.100

4.設(shè)點(diǎn)是線段BC的中點(diǎn),點(diǎn)A在直線BC外,,

,則()

A.2B.4C.6D.8

5.右圖的算法中,若輸入A=192,B=22,輸出的是()

A.0B.2C.4D.6

6.給出命題p:直線

互相平行的充要條件是;

命題q:若平面內(nèi)不共線的三點(diǎn)到平面的距離相等,則∥。

對(duì)以上兩個(gè)命題,下列結(jié)論中正確的是()

A.命題“p且q”為真B.命題“p或q”為假

C.命題“p且┓q”為假D.命題“p且┓q”為真

7.若關(guān)于的不等式組表示的區(qū)域?yàn)槿切?,則實(shí)數(shù)的取值范圍是()

A.(-∞,1)B.(0,1)C.(-1,1)D.(1,+∞)

8.把五個(gè)標(biāo)號(hào)為1到5的小球全部放入標(biāo)號(hào)為1到4的四個(gè)盒子中,不許有空盒且任意一個(gè)小球都不能放入標(biāo)有相同標(biāo)號(hào)的盒子中,則不同的方法有()

A.36種B.45種C.54種D.84種

9.設(shè)偶函數(shù)的

部分圖像如圖所示,為等腰直角三角形,

∠=90°,||=1,則的值為()

A.B.C.D.

10.已知點(diǎn),動(dòng)圓C與直線切于點(diǎn)B,過(guò)與圓C相切的兩直線相交于點(diǎn)P,則P點(diǎn)的軌跡方程為()

A.B.

C.D.

11.函數(shù)有且只有兩個(gè)不同的零點(diǎn),則b的值為()

A.B.C.D.不確定

12.已知三邊長(zhǎng)分別為4、5、6的△ABC的外接圓恰好是球的一個(gè)大圓,P為球面上一點(diǎn),若點(diǎn)P到△ABC的三個(gè)頂點(diǎn)的距離相等,則三棱錐P-ABC的體積為()

A.5B.10C.20D.30

第Ⅱ卷

二、填空題:本大題共4小題,每小題5分。

13.設(shè)二項(xiàng)式的展開(kāi)式中的系數(shù)為A,常數(shù)項(xiàng)為B,若B=4A,則。

14.已知函數(shù),其中實(shí)數(shù)隨機(jī)選自區(qū)間[-2,1],則對(duì),都有恒成立的概率是。

15.若某幾何體的三視圖(單位:㎝)如圖所示,

則此幾何體的體積等于㎝3。

16.定義函數(shù),其中表示不超過(guò)的

整數(shù),當(dāng)時(shí),設(shè)函數(shù)的值域

為集合A,記A中的元素個(gè)數(shù)為,

則的最小值為。

三、解答題:本大題共6小題,共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。

17.(本小題滿分12分)

已知角的頂點(diǎn)在原點(diǎn),始邊與x軸的正半軸重合,終邊經(jīng)過(guò)點(diǎn).

(Ⅰ)求的值;

(Ⅱ)若函數(shù),求函數(shù)在區(qū)間上的值域。

18.(本小題滿分12分)

如圖,已知平行四邊形ABCD和平行四邊形ACEF所在的平面相交于

直線AC,EC⊥平面ABCD,AB=1,AD=2,∠ADC=60°,AF=。

(I)求證:AC⊥BF

(II)求二面角F-BD-A的大小

19.(本小題滿分12分)

男女

9

98

8650

7421

115

16

17

18

1977899

124589

23456

01

第12屆全運(yùn)會(huì)將于2013年8月31日在遼寧沈陽(yáng)舉行,組委會(huì)在沈陽(yáng)某大學(xué)招募了12名男志愿者和18名女志愿者,將這30名志愿者的身高編成如右所示的莖葉圖(單位:㎝),若身高在175㎝以上(包括175㎝)定義為“高個(gè)子”,身高在175㎝以下(不包括175㎝)定義為“非高個(gè)子”,且只有“女高個(gè)子”才擔(dān)任“禮儀小姐”.

(Ⅰ)如果用分層抽樣的方法從“高個(gè)子”和“非高個(gè)子”中共抽取5人,再?gòu)倪@5人中選2人,求至少有一人是“高個(gè)子”的概率?

(II)若從所有“高個(gè)子”中選出3名志愿者,用ξ表示所選志愿者中能擔(dān)任“禮儀小姐”的人數(shù),試寫出ξ的分布列,并求ξ的數(shù)學(xué)期望.

20.(本小題滿分12分)

在直角坐標(biāo)系xoy上取兩個(gè)定點(diǎn),再取兩個(gè)動(dòng)點(diǎn)且=3.

(Ⅰ)求直線與交點(diǎn)的軌跡的方程;

(II)已知,設(shè)直線:與(I)中的軌跡交于、兩點(diǎn),直線、的傾斜角分別為,且,求證:直線過(guò)定點(diǎn),并求該定點(diǎn)的坐標(biāo)

21.(本小題滿分12分)

函數(shù).

(Ⅰ)當(dāng)x>0時(shí),求證:;

(II)在區(qū)間(1,e)上恒成立,求實(shí)數(shù)的范圍;

(Ⅲ)當(dāng)時(shí),求證:…()

請(qǐng)考生在第(22)、(23)、(24)三題中任選一題作答,如果多做,則按所做的第一題記分。做題時(shí)用2B鉛筆在答題卡上把所選題目的題號(hào)涂黑。

22.略

23.(本小題滿分10分)選修4-4坐標(biāo)系與參數(shù)方程

以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.

(Ⅰ)試分別將曲線Cl的極坐標(biāo)方程和曲線C2的參數(shù)方程(t為參數(shù))化為直角坐標(biāo)方程和普通方程:

(II)若紅螞蟻和黑螞蟻分別在曲線Cl和曲線C2上爬行,求紅螞蟻和黑螞蟻之間的距離(視螞蟻為點(diǎn)).

高三年級(jí)理科數(shù)學(xué)答案

一、選擇題:本大題共12小題,每小題5分,共60分,在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題意要求的.

1.C2.B3.D4.A5.B6.D7.C8.D9.D10.A11.C12.B

二、填空題:本大題共4小題,每小題5分,共20分.

13.14.15.16.

三、解答題:本大題共6小題,共75分,解答應(yīng)寫出文字說(shuō)明,證明過(guò)程或演算步驟。

17.解:(Ⅰ)因?yàn)榻墙K邊經(jīng)過(guò)點(diǎn),

所以,,………3分

………6分

(Ⅱ),

………9分

,

故函數(shù)在區(qū)間上的值域?yàn)?………12分

18.解:(Ⅰ)∵CD=,∴AC=,滿足

∴………2分

又平面,故以CD為x軸,CA為y軸,以CE為z軸建立空間直角坐標(biāo)系,

其中C(0,0,0),D(1,0,0),A(0,,0),F(xiàn)(0,,)B(-1,,0)………4分

∴,,∴∴……6分

(Ⅱ)平面的一個(gè)法向量設(shè)平面的一個(gè)法向量

且,

由得………8分

∴,令得,………10分

∴故所求二面角F—BD—A的大小為arccos………12分

19.(Ⅰ)根據(jù)莖葉圖,有“高個(gè)子”12人,“非高個(gè)子”18人,

用分層抽樣的方法,每個(gè)人被抽中的概率是,

所以選中的“高個(gè)子”有人,“非高個(gè)子”有人.………3分

用事件表示“至少有一名“高個(gè)子”被選中”,則它的對(duì)立事件表示“沒(méi)有一名“高個(gè)子”被選中”,則.

因此,至少有一人是“高個(gè)子”的概率是.…………6分

(Ⅱ)依題意,的取值為.

,,,.因此,的分布列如下:

20.解:(Ⅰ)依題意知直線的方程為:①

直線的方程為:②

設(shè)是直線與交點(diǎn),①×②得

由整理得………4分

∵不與原點(diǎn)重合∴點(diǎn)不在軌跡M上∴軌跡M的方程為()………5分

(Ⅱ)由題意知,直線的斜率存在且不為零,

聯(lián)立方程,得設(shè),則

,且

由已知,得,

化簡(jiǎn),得

代入,得∴整理得.

∴直線的方程為y=k(x-4),因此直線過(guò)定點(diǎn),該定點(diǎn)的坐標(biāo)為(4,0).

21(Ⅰ)證明:設(shè)

則,則,即在處取到最小值,則,即原結(jié)論成立.………3分

(Ⅱ)解:由得即,

另,另,

則單調(diào)遞增,所以

因?yàn)?所以,即單調(diào)遞增,則的值為

所以的取值范圍為.………7分

(Ⅲ)證明:由第一問(wèn)得知?jiǎng)t

……12分

22.略

23解:(1)曲線┅┅┅2分

曲線,即┅┅┅┅5分

(2)因?yàn)?/p>

所以圓與圓內(nèi)切

所以紅螞蟻和黑螞蟻之間的距離為圓的直徑┅┅10分


221381
Z范文網(wǎng)、范文協(xié)會(huì)網(wǎng)范文檔案館、