中文字幕人妻色偷偷久久_天天鲁一鲁摸一摸爽一爽_最新亚洲人成网站在线观看_999久久久免费精品国产_久久精品丝袜高跟鞋

歡迎訪一網(wǎng)寶!您身邊的知識小幫手,專注做最新的學(xué)習(xí)參考資料!

歷史必修三復(fù)習(xí)提綱資料歸納

一網(wǎng)寶 分享 時(shí)間: 加入收藏 我要投稿 點(diǎn)贊

正確區(qū)分等腰三角形的判定與性質(zhì),能夠利用等腰三角形的判定定理證明線段的相等關(guān)系.一起看看初二數(shù)學(xué)全等三角形的判定教案!歡迎查閱!

初二數(shù)學(xué)全等三角形的判定教案1

教學(xué)目標(biāo)

1、 理解并掌握等腰三角形的判定定理及推論

2、 能利用其性質(zhì)與判定證明線段或角的相等關(guān)系.

教學(xué)重點(diǎn): 等腰三角形的判定定理及推論的運(yùn)用

教學(xué)難點(diǎn): 正確區(qū)分等腰三角形的判定與性質(zhì),能夠利用等腰三角形的判定定理證明線段的相等關(guān)系.

教學(xué)過程:

一、復(fù)習(xí)等腰三角形的性質(zhì)

二、新授:

I提出問題,創(chuàng)設(shè)情境

出示投影片.某地質(zhì)專家為估測一條東西流向河流的寬度,選擇河流北岸上一棵樹(B點(diǎn))為B標(biāo),然后在這棵樹的正南方(南岸A點(diǎn)抽一小旗作標(biāo)志)沿南偏東60°方向走一段距離到C處時(shí),測得∠ACB為30°,這時(shí),地質(zhì)專家測得AC的長度就可知河流寬度.

學(xué)生們很想知道,這樣估測河流寬度的根據(jù)是什么?帶著這個(gè)問題,引導(dǎo)學(xué)生學(xué)習(xí)“等腰三角形的判定”.

II引入新課

1.由性質(zhì)定理的題設(shè)和結(jié)論的變化,引出研究的內(nèi)容——在△ABC中,苦∠B=∠C,則AB= AC嗎?

作一個(gè)兩個(gè)角相等的三角形,然后觀察兩等角所對的邊有什么關(guān)系?

2.引導(dǎo)學(xué)生根據(jù)圖形,寫出已知、求證.

2、小結(jié),通過論證,這個(gè)命題是真命題,即“等腰三角形的判定定理”(板書定理名稱).

強(qiáng)調(diào)此定理是在一個(gè)三角形中把角的相等關(guān)系轉(zhuǎn)化成邊的相等關(guān)系的重要依據(jù),類似于性質(zhì)定理可簡稱“等角對等邊”.

4.引導(dǎo)學(xué)生說出引例中地質(zhì)專家的測量方法的根據(jù).

初二數(shù)學(xué)全等三角形的判定教案2

學(xué)習(xí)目標(biāo)

1.通過動手觀察、操作、推斷、交流等數(shù)學(xué)活動,進(jìn)一步發(fā)展空間觀念毛

2.在具體情境中了解鄰補(bǔ)角、對頂角, 能找出圖形中的一個(gè)角的鄰補(bǔ)角和對頂角

重點(diǎn)、難點(diǎn)

重點(diǎn):鄰補(bǔ)角、對頂角的概念,對頂角性質(zhì)與應(yīng)用.

難點(diǎn):理解對頂角相等的性質(zhì)的探索.

教學(xué)過程

一、復(fù)習(xí)導(dǎo)入

教師在輕松歡快的音樂中演示第五章章首圖片為主體的課件.

學(xué)生欣賞圖片,閱讀其中的文字.

師生共同總結(jié):我們生活的世界中,蘊(yùn)涵著大量的相交線和平行線. 本章要研究相交線所成的角和它的特征,相交線的一種特殊形式即垂直,垂線的性質(zhì), 研究平行線的性質(zhì)和平行的判定以及圖形的平移問題.

二、自學(xué)指導(dǎo)

觀察剪刀剪布的過程,引入兩條相交直線所成的角

握緊把手時(shí),隨著兩個(gè)把手之間的角逐漸變小,剪刀刃之間的角邊相應(yīng)變小. 如果改變用力方向,隨著兩個(gè)把手之間的角逐漸變大,剪刀刃之間的角也相應(yīng)變大.

三、 問題導(dǎo)學(xué)

認(rèn)識鄰補(bǔ)角和對頂角,探索對頂角性質(zhì)

(1).學(xué)生畫直線AB、CD相交于點(diǎn)O,并說出圖中4個(gè)角,兩兩相配共能組成幾對角? 各對角的位置關(guān)系如何?根據(jù)不同的位置怎么將它們分類?

學(xué)生思考并在小組內(nèi)交流,全班交流.

∠AOC和∠BOC有一條公共邊OC,它們的另一邊互為反向延長線.

∠AOC和∠BOD有公共的頂點(diǎn)O,而是∠AOC的兩邊分別是∠BOD兩邊的反向延長線.

( 2).學(xué)生用量角器分別量一量各個(gè)角的度數(shù),以發(fā)現(xiàn)各類角的度數(shù)有什么關(guān)系,學(xué)生得出有"相鄰"關(guān)系的兩角互補(bǔ),"對頂"關(guān)系的兩角相等.

(3).概括形成鄰補(bǔ)角、對頂角概念.

有一條公共邊,而且另一邊互為反向延長線的兩個(gè)角叫做鄰補(bǔ)角.

如果兩個(gè)角有一個(gè)公共頂點(diǎn), 而且一個(gè)角的兩邊分別是另一角兩邊的反向延長線,那么這兩個(gè)角叫對頂角.

四、典題訓(xùn)練

1.例:如圖,直線a,b相交,∠1=40°,求∠2,∠3,∠4的度數(shù).

2.:判斷下列圖中是否存在對頂角.

小結(jié)

自我檢測

一、判斷題:

1.如果兩個(gè)角有公共頂點(diǎn)和一條公共邊,而且這兩角互為補(bǔ)角, 那么它們互為鄰補(bǔ)角. ( )

2.兩條直線相交,如果它們所成的鄰補(bǔ)角相等,那么一對對頂角就互補(bǔ). ( )

二、填空題:

1.如圖1,直線AB、CD、EF相交于點(diǎn)O,∠BOE的對頂角是_______,∠COF 的鄰補(bǔ)角是________.若∠AOC:∠AOE=2:3,∠EOD=130°,則∠BOC=_________.

(1) (2)

2.如圖2,直線AB、CD相交于點(diǎn)O,∠COE=90°,∠AOC=30°,∠FOB=90°, 則∠EOF=________.

三、解答題:

1.如圖,直線AB、CD相交于點(diǎn)O.

(1)若∠AOC+∠BOD=100°,求各角的度數(shù).

(2)若∠BOC比∠AOC的2倍多33°,求各角的度數(shù).毛

2.兩條直線相交,如果它們所成的一對對頂角互補(bǔ), 那么它的所成的各角的度數(shù)是多少?

初二數(shù)學(xué)全等三角形的判定教案3

教學(xué)目標(biāo)

1.會解簡易方程,并能用簡易方程解簡單的應(yīng)用題;

2.通過代數(shù)法解簡易方程進(jìn)一步培養(yǎng)學(xué)生的運(yùn)算能力,發(fā)展學(xué)生的應(yīng)用意識;

3.通過解決問題的實(shí)踐,激發(fā)學(xué)生的學(xué)習(xí)興趣,培養(yǎng)學(xué)生的鉆研精神。

教學(xué)建議

一、教學(xué)重點(diǎn)、難點(diǎn)

重點(diǎn):簡易方程的解法;

難點(diǎn):根據(jù)實(shí)際問題中的數(shù)量關(guān)系正確地列出方程并求解。

二、重點(diǎn)、難點(diǎn)分析

解簡易方程的基本方法是:將方程兩邊同時(shí)加上(或減去)同一個(gè)適當(dāng)?shù)臄?shù);將方程兩邊同時(shí)乘以(或除以)同一個(gè)適當(dāng)?shù)臄?shù)。最終求出問題的解。

判斷方程求解過程中兩邊加上(或減去)以及乘以(或除以)的同一個(gè)數(shù)是否“適當(dāng)”,關(guān)鍵是看運(yùn)算的第一步能否使方程的一邊只含有帶有未知數(shù)的那個(gè)數(shù),第二步能否使方程的一邊只剩下未知數(shù),即求出結(jié)果。

列簡易方程解應(yīng)用題是以列代數(shù)式為基礎(chǔ)的,關(guān)鍵是在弄清楚題目語句中各種數(shù)量的意義及相互關(guān)系的基礎(chǔ)上,選取適當(dāng)?shù)奈粗獢?shù),然后把與數(shù)量有關(guān)的語句用代數(shù)式表示出來,最后利用題中的相等關(guān)系列出方程并求解。

三、知識結(jié)構(gòu)

導(dǎo)入 方程的概念 解簡易方程 利用簡易方程解應(yīng)用題。

四、教法建議

(1)在本節(jié)的導(dǎo)入部分,須使學(xué)生理解的是算術(shù)運(yùn)算只對已知數(shù)進(jìn)行加、減、乘、除,而代數(shù)運(yùn)算的優(yōu)越性體現(xiàn)在未知數(shù)獲得與已知數(shù)平等的地位,即同樣可以和已知數(shù)進(jìn)行加、減、乘、除運(yùn)算。對于方程、方程的解、解方程的概念讓學(xué)生了解即可。

(2)解簡易方程,要在學(xué)生積極參與的基礎(chǔ)上,理解何種形式的方程在求解過程中方程兩邊選擇加上(或減去)同一個(gè)數(shù),以及何種形式的方程在求解過程中兩邊選擇乘以(或除以)同一個(gè)數(shù)。另一個(gè)重要的問題就是“適當(dāng)?shù)臄?shù)”的選擇了。通常,整式方程并不需要檢驗(yàn),但為了學(xué)生從一開始就養(yǎng)成自我檢查的好習(xí)慣,可以讓學(xué)生在草稿紙上檢驗(yàn),同時(shí)也是對前面學(xué)過的求代數(shù)式的值的復(fù)習(xí)。

(3)教材給出了三道應(yīng)用題,其中例4是一道有關(guān)公式應(yīng)用的方程問題。列簡易方程解應(yīng)用題,關(guān)鍵在引導(dǎo)學(xué)生加深對代數(shù)式的理解基礎(chǔ)上,認(rèn)真讀懂題意,弄清楚題目中的關(guān)鍵語句所包含的各種數(shù)量的意義及相互關(guān)系。恰當(dāng)?shù)卦O(shè)未知數(shù),用代數(shù)式表示數(shù)學(xué)語句,依據(jù)相等關(guān)系正確的列出方程并求解。

(4)教學(xué)過程中,應(yīng)充分發(fā)揮多媒體技術(shù)的輔助教學(xué)作用,可以參考運(yùn)用相關(guān)課件提高學(xué)生的學(xué)習(xí)興趣,加深對列簡易方程解簡單的應(yīng)用題的整個(gè)分析、解決問題過程的理解。此外,通過應(yīng)用投影儀、幻燈片可以提高課堂效率,有利于對知識點(diǎn)的掌握。

五、列簡易方程解應(yīng)用題

列簡易方程解應(yīng)用題的一般步驟

(1)弄清題意和題目中的已知數(shù)、未知數(shù),用字母(如x)表示題目中的一個(gè)未知數(shù).

(2)找出能夠表示應(yīng)用題全部含義的一個(gè)相等關(guān)系.

(3)根據(jù)這個(gè)相等關(guān)系列出需要的代數(shù)式,從而列出方程.

(4)解這個(gè)方程,求出未知數(shù)的值.

(5)寫出答案(包括單位名稱).

概括地說,列簡易方程解應(yīng)用題,一般有“設(shè)、列、解、驗(yàn)、答”五個(gè)步驟,審題可在草稿紙上進(jìn)行.其中關(guān)鍵是“列”,即列出符合題意的方程.難點(diǎn)是找等量關(guān)系.要想抓住關(guān)鍵、突破難點(diǎn),一定要開動腦筋,勤于思考、努力提高自己分析問題和解決問題的能力.

初二數(shù)學(xué)全等三角形的判定教案4

教學(xué)目標(biāo)

1.能解簡易方程,并能用簡易方程解簡單的應(yīng)用題。

2.初步培養(yǎng)學(xué)生方程的思想及分析解決問題的能力。

教學(xué)重點(diǎn)和難點(diǎn)

重點(diǎn):簡易方程的解法和根據(jù)實(shí)際問題列出方程。

難點(diǎn):正確地列出方程。

課堂教學(xué)過程設(shè)計(jì)

一、從學(xué)生原有的認(rèn)知結(jié)構(gòu)提出問題

1.針對以往學(xué)過的一些知識,教師請學(xué)生回答下列問題:

(1)什么叫等式?等式的兩個(gè)性質(zhì)是什么?

(2)下列等式中x取什么數(shù)值時(shí),等式能夠成立?

2.在學(xué)生回答完上述問題的基礎(chǔ)上,引出課題

在小學(xué)學(xué)習(xí)方程時(shí),學(xué)生們已知有關(guān)方程的三個(gè)重要概念,即方程、方程的解和解方程.現(xiàn)在學(xué)習(xí)了等式之后,我們就可以更深刻、更全面地理解這些概念,并同時(shí)板書課題:簡易方程.

二、講授新課

1.方程

在等式4+x=7中,我們將字母x稱為未知數(shù),或者說是待定的數(shù).像這樣含有未知數(shù)的等式,稱為方程.并板書方程定義.

例1 (投影)判斷下列各式是否為方程,如果是,指出已知數(shù)和未知數(shù);如果不是,說明為什么.

(1)5-2x=1;(2)y=4x-1;(3)x-2y=6;(4)2x2+5x+8.

分析:本題在解答時(shí)需注意兩點(diǎn):一是已知數(shù)應(yīng)包括它的符號在內(nèi);二是未知數(shù)的系數(shù)若是1,這個(gè)省寫的1也可看作已知數(shù).

(本題的解答應(yīng)由學(xué)生口述,教師利用投影片打出來完成)

2.簡易方程

簡易方程這一小節(jié)的前面主要是復(fù)習(xí)、歸納小學(xué)學(xué)過的 有關(guān)方程的基本知識,提出了算術(shù)解法與代數(shù)解法的說法,以便以后逐步講述代數(shù)解法的優(yōu)越性。

例2 解下列方程:

(1)   (2)

分析 方程(1)的左邊需減去 ,根據(jù)等式的性質(zhì)(2),必須兩邊同時(shí)減去 ,得 ,方程的左邊需要乘以3,使 的系數(shù)化為1,根據(jù)等式的性質(zhì)(3),必須兩邊同時(shí)乘以3,得 ,方程(2)的解題思路與(1)類似。

解(1)方程兩邊都減去 ,得

兩邊都乘以3,得 。

(2)方程兩邊都加上6,得 。

方程兩邊都乘以 ,得 ,即 。

注意:(1)根據(jù)方程的解的概念,我們可以將所得結(jié)果代入原方程檢驗(yàn),如果左邊=右邊,說明結(jié)果是正確的,否則,左邊≠右邊,說明你求得的x的值,不是原方程的解,肯定計(jì)算有錯誤,這時(shí),一定要細(xì)心檢查,或者再重解一遍.

(2)解簡易方程時(shí),不要求寫出檢驗(yàn)這一步.

例3 甲隊(duì)有54人,乙隊(duì)有66人,問從甲隊(duì)調(diào)給乙隊(duì)幾人能使甲隊(duì)人數(shù)是乙隊(duì)人數(shù)的 ?

分析此題必須弄清:一、甲、乙兩隊(duì)原來各有多少人;二、變動后甲、乙兩隊(duì)各有多少人(注意:甲隊(duì)減少的人數(shù)正是乙隊(duì)增加的人數(shù));三、題中的等量關(guān)系是:變動后甲隊(duì)人數(shù)是乙隊(duì)人數(shù)的 ,即變動后甲隊(duì)人數(shù)的3倍等于乙隊(duì)人數(shù).

解 設(shè)從甲隊(duì)調(diào)給乙隊(duì)x人,

則變動后甲隊(duì)有 人,乙隊(duì)有 人,根據(jù)題意,得:

答:從甲隊(duì)調(diào)給乙隊(duì)24人。

三、課堂練習(xí)(投影)

1.判斷下列各式是不是方程,如果是,指出已知數(shù)和未知數(shù);如果不是,說明為什么.

(1)3y-1=2y; (2)3+4x+5x2; (3)7×8=8×7 (4)6=0.

2.根據(jù)條件列出方程:

(l)某數(shù)的一半比某數(shù)的3倍大4;

(2)某數(shù)比它的平方小42.

3.檢驗(yàn)下列各小題括號里的數(shù)是不是它前面的方程的解:

四、師生共同小結(jié)

1.請學(xué)生回答以下問題:

(1)本節(jié)課學(xué)習(xí)了哪些內(nèi)容?

(2)方程與代數(shù)式,方程與等式的區(qū)別是什么?

(3)如何列方程?

2.教師在學(xué)生回答完上述問題的基礎(chǔ)上,應(yīng)指出:

(1)方程、等式、代數(shù)式,這三者的定義是正確區(qū)分它們的標(biāo)準(zhǔn);

(2)方程的解是一個(gè)數(shù)值(或幾個(gè)數(shù)值),它是使方程左、右兩邊的值相等的未知數(shù)的值它是根據(jù)未知數(shù)與已知數(shù)之間的相等關(guān)系確定的.而解方程是指確定方程的解的過程,是一個(gè)變形過程.

五、作業(yè)

1.根據(jù)所給條件列出方程:

(1)某數(shù)與6的和的3倍等于21;

(2)某數(shù)的7倍比某數(shù)大5;

(3)某數(shù)與3的和的平方等于這數(shù)的15倍減去5;

(4)矩形的周長是40,長比寬多10,求矩形的長與寬;

(5)三個(gè)連續(xù)整數(shù)之和為75,求這三個(gè)數(shù).

2.檢驗(yàn)下列各小題括號里的數(shù)是否是它前面的方程的解:

(3)x(x+1)=12,(x=3,x=4).

初二數(shù)學(xué)全等三角形的判定教案5

教學(xué)目標(biāo)

1使學(xué)生掌握代數(shù)式的值的概念,能用具體數(shù)值代替代數(shù)式中的字母,求出代數(shù)式的值;

2培養(yǎng)學(xué)生準(zhǔn)確地運(yùn)算能力,并適當(dāng)?shù)貪B透特殊與一般的辨證關(guān)系的思想。

教學(xué)重點(diǎn)和難點(diǎn)

重點(diǎn)和難點(diǎn):正確地求出代數(shù)式的值

課堂教學(xué)過程設(shè)計(jì)

一、從學(xué)生原有的認(rèn)識結(jié)構(gòu)提出問題

1用代數(shù)式表示:(投影)

(1)a與b的和的平方;(2)a,b兩數(shù)的平方和;

(3)a與b的和的50%

2用語言敘述代數(shù)式2n+10的意義

3對于第2題中的代數(shù)式2n+10,可否編成一道實(shí)際問題呢?(在學(xué)生回答的基礎(chǔ)上,教師打投影)

某學(xué)校為了開展體育活動,要添置一批排球,每班配2個(gè),學(xué)校另外留10個(gè),如果這個(gè)學(xué)校共有n個(gè)班,總共需多少個(gè)排球?

若學(xué)校有15個(gè)班(即n=15),則添置排球總數(shù)為多少個(gè)?若有20個(gè)班呢?

最后,教師根據(jù)學(xué)生的回答情況,指出:需要添置排球總數(shù),是隨著班數(shù)的確定而確定的;當(dāng)班數(shù)n取不同的數(shù)值時(shí),代數(shù)式2n+10的計(jì)算結(jié)果也不同,顯然,當(dāng)n=15時(shí),代數(shù)式的值是40;當(dāng)n=20時(shí),代數(shù)式的值是50我們將上面計(jì)算的結(jié)果40和50,稱為代數(shù)式2n+10當(dāng)n=15和n=20時(shí)的值這就是本節(jié)課我們將要學(xué)習(xí)研究的內(nèi)容

二、師生共同研究代數(shù)式的值的意義

1用數(shù)值代替代數(shù)式里的字母,按代數(shù)式指明的運(yùn)算,計(jì)算后所得的結(jié)果,叫做代數(shù)式的值

2結(jié)合上述例題,提出如下幾個(gè)問題:

(1)求代數(shù)式2x+10的值,必須給出什么條件?

(2)代數(shù)式的值是由什么值的確定而確定的?

當(dāng)教師引導(dǎo)學(xué)生說出:“代數(shù)式的值是由代數(shù)式里字母的取值的確定而確定的”之后,可用圖示幫助學(xué)生加深印象

然后,教師指出:只要代數(shù)式里的字母給定一個(gè)確定的值,代數(shù)式就有確定的值與它對應(yīng)

(3)求代數(shù)式的值可以分為幾步呢?在“代入”這一步,應(yīng)注意什么呢?

下面教師結(jié)合例題來引導(dǎo)學(xué)生歸納,概括出上述問題的答案(教師板書例題時(shí),應(yīng)注意格式規(guī)范化)

例1 當(dāng)x=7,y=4,z=0時(shí),求代數(shù)式x(2x-y+3z)的值

解:當(dāng)x=7,y=4,z=0時(shí),

x(2x-y+3z)=7×(2×7-4+3×0)

=7×(14-4)

=70

注意:如果代數(shù)式中省略乘號,代入后需添上乘號

例2 根據(jù)下面a,b的值,求代數(shù)式a2- 的值

(1)a=4,b=12,(2)a=1 ,b=1

解:(1)當(dāng)a=4,b=12時(shí),

a2- =42- =16-3=13;

(2)當(dāng)a=1 ,b=1時(shí),

a2- = - = 

注意(1)如果字母取值是分?jǐn)?shù),作乘方運(yùn)算時(shí)要加括號;

(2)注意書寫格式,“當(dāng)……時(shí)”的字樣不要丟;

(3)代數(shù)式里的字母可取不同的值,但是所取的值不應(yīng)當(dāng)使代數(shù)式或代數(shù)式所表示的數(shù)量關(guān)系失去實(shí)際意義,如此例中a不能為零,在代數(shù)式2n+10中,n是代數(shù)班的個(gè)數(shù),n不能取分?jǐn)?shù)最后,請學(xué)生總結(jié)出求代數(shù)值的步驟:①代入數(shù)值②計(jì)算結(jié)果

三、課堂練習(xí)

1(1)當(dāng)x=2時(shí),求代數(shù)式x2-1的值;

(2)當(dāng)x= ,y= 時(shí),求代數(shù)式x(x-y)的值

2當(dāng)a= ,b= 時(shí),求下列代數(shù)式的值:

(1)(a+b)2; (2)(a-b)2

3當(dāng)x=5,y=3時(shí),求代數(shù)式 的值

答案:1.(1)3; (2) ; 2.(1) ;(2) ; 3. .

四、師生共同小結(jié)

首先,請學(xué)生回答下面問題:

1本節(jié)課學(xué)習(xí)了哪些內(nèi)容?

2求代數(shù)式的值應(yīng)分哪幾步?

3在“代入”這一步應(yīng)注意什么”

其次,結(jié)合學(xué)生的回答,教師指出:(1)求代數(shù)式的值,就是用數(shù)值代替代數(shù)式里的字母按照代數(shù)式的運(yùn)算順序,直接計(jì)算后所得的結(jié)果就叫做代數(shù)式的值;(2)代數(shù)式的值是由代數(shù)式里字母所取值的確定而確定的.

五、作業(yè)

當(dāng)a=2,b=1,c=3時(shí),求下列代數(shù)式的值:

(1)c-(c-a)(c-b); (2) .



精選圖文

221381
Z范文網(wǎng)、范文協(xié)會網(wǎng)、范文檔案館