中文字幕人妻色偷偷久久_天天鲁一鲁摸一摸爽一爽_最新亚洲人成网站在线观看_999久久久免费精品国产_久久精品丝袜高跟鞋

歡迎訪一網寶!您身邊的知識小幫手,專注做最新的學習參考資料!

2021中考數學知識點歸納

一網寶 分享 時間: 加入收藏 我要投稿 點贊

復習數學時要抓住教材中的重點內容,讓學生掌握分析方法,引導學生從不同角度出發(fā)思索問題,由此探索一題多解、一題多變和一題多用之法。下面是小編為大家整理的有關中考數學知識點最全匯總,希望對你們有幫助!

中考數學知識點最全匯總

三角函數關系

倒數關系

tanα·cotα=1

sinα·cscα=1

cosα·secα=1

商的關系

sinα/cosα=tanα=secα/cscα

cosα/sinα=cotα=cscα/secα

平方關系

sin^2(α)+cos^2(α)=1

1+tan^2(α)=sec^2(α)

1+cot^2(α)=csc^2(α)

同角三角函數關系六角形記憶法

構造以"上弦、中切、下割;左正、右余、中間1"的正六邊形為模型。

倒數關系

對角線上兩個函數互為倒數;

商數關系

六邊形任意一頂點上的函數值等于與它相鄰的兩個頂點上函數值的乘積。(主要是兩條虛線兩端的三角函數值的乘積,下面4個也存在這種關系。)。由此,可得商數關系式。

平方關系

在帶有陰影線的三角形中,上面兩個頂點上的三角函數值的平方和等于下面頂點上的三角函數值的平方。

銳角三角函數定義

銳角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的銳角三角函數。

正弦(sin)等于對邊比斜邊;sinA=a/c

余弦(cos)等于鄰邊比斜邊;cosA=b/c

正切(tan)等于對邊比鄰邊;tanA=a/b

余切(cot)等于鄰邊比對邊;cotA=b/a

正割(sec)等于斜邊比鄰邊;secA=c/b

余割(csc)等于斜邊比對邊。cscA=c/a

互余角的三角函數間的關系

sin(90°-α)=cosα,cos(90°-α)=sinα,

tan(90°-α)=cotα,cot(90°-α)=tanα.

平方關系:

sin^2(α)+cos^2(α)=1

tan^2(α)+1=sec^2(α)

cot^2(α)+1=csc^2(α)

積的關系:

sinα=tanα·cosα

cosα=cotα·sinα

tanα=sinα·secα

cotα=cosα·cscα

secα=tanα·cscα

cscα=secα·cotα

倒數關系:

tanα·cotα=1

sinα·cscα=1

cosα·secα=1

圓的定理:

1不在同一直線上的三點確定一個圓。

2垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧

推論1①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧

②弦的垂直平分線經過圓心,并且平分弦所對的兩條弧

③平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧

推論2圓的兩條平行弦所夾的弧相等

3圓是以圓心為對稱中心的中心對稱圖形

4圓是定點的距離等于定長的點的集合

5圓的內部可以看作是圓心的距離小于半徑的點的集合

6圓的外部可以看作是圓心的距離大于半徑的點的集合

7同圓或等圓的半徑相等

8到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓

9定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等

10推論在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等

中考數學知識點復習口訣

有理數的加法運算

同號相加一邊倒;異號相加“大”減“小”,

符號跟著大的跑;絕對值相等“零”正好。

合并同類項

合并同類項,法則不能忘,只求系數和,字母、指數不變樣。

去、添括號法則

去括號、添括號,關鍵看符號,

括號前面是正號,去、添括號不變號,

括號前面是負號,去、添括號都變號。

一元一次方程

已知未知要分離,分離方法就是移,加減移項要變號,乘除移了要顛倒。

平方差公式

平方差公式有兩項,符號相反切記牢,首加尾乘首減尾,莫與完全公式相混淆。

完全平方公式

完全平方有三項,首尾符號是同鄉(xiāng),首平方、尾平方,首尾二倍放中央;

首±尾括號帶平方,尾項符號隨中央。

因式分解

一提(公因式)二套(公式)三分組,細看幾項不離譜,

兩項只用平方差,三項十字相乘法,陣法熟練不馬虎,

四項仔細看清楚,若有三個平方數(項),

就用一三來分組,否則二二去分組,

五項、六項更多項,二三、三三試分組,

以上若都行不通,拆項、添項看清楚。

單項式運算

加、減、乘、除、乘(開)方,三級運算分得清,

系數進行同級(運)算,指數運算降級(進)行。

一元一次不等式解題步驟

去分母、去括號,移項時候要變號,同類項合并好,再把系數來除掉,

兩邊除(以)負數時,不等號改向別忘了。

一元一次不等式組的解集

大大取較大,小小取較小,小大、大小取中間,大小、小大無處找。

一元二次不等式、一元一次絕對值不等式的解集

大(魚)于(吃)取兩邊,小(魚)于(吃)取中間。

分式混合運算法則

分式四則運算,順序乘除加減,乘除同級運算,除法符號須變(乘);

乘法進行化簡,因式分解在先,分子分母相約,然后再行運算;

加減分母需同,分母化積關鍵;找出最簡公分母,通分不是很難;

變號必須兩處,結果要求最簡。

分式方程的解法步驟

同乘最簡公分母,化成整式寫清楚,

求得解后須驗根,原(根)留、增(根)舍,別含糊。

最簡根式的條件

最簡根式三條件,號內不把分母含,

冪指數(根指數)要互質、冪指比根指小一點。

特殊點的坐標特征

坐標平面點(x,y),橫在前來縱在后;

(+,+),(-,+),(-,-)和(+,-),四個象限分前后;

x軸上y為0,x為0在y軸。

象限角的平分線

象限角的平分線,坐標特征有特點,一、三橫縱都相等,二、四橫縱卻相反。

平行某軸的直線

平行某軸的直線,點的坐標有講究,

直線平行x軸,縱坐標相等橫不同;

直線平行于y軸,點的橫坐標仍照舊。

對稱點的坐標

對稱點坐標要記牢,相反數位置莫混淆,

x軸對稱y相反,y軸對稱x相反;

原點對稱記,橫縱坐標全變號。

自變量的取值范圍

分式分母不為零,偶次根下負不行;

零次冪底數不為零,整式、奇次根全能行。

函數圖像的移動規(guī)律

若把一次函數的解析式寫成y=k(x+0)+b,

二次函數的解析式寫成y=a(x+h)2+k的形式,

則可用下面的口訣

“左右平移在括號,上下平移在末稍,左正右負須牢記,上正下負錯不了”.

一次函數圖象與性質口訣

一次函數是直線,圖象經過三象限;

正比例函數更簡單,經過原點一直線;

兩個系數k與b,作用之大莫小看,k是斜率定夾角,b與y軸來相見,

k為正來右上斜,x增減y增減;

k為負來左下展,變化規(guī)律正相反;

k的絕對值越大,線離橫軸就越遠。

二次函數圖像與性質口訣

二次函數拋物線,圖象對稱是關鍵;

開口、頂點和交點,它們確定圖象現;

開口、大小由a斷,c與y軸來相見;

b的符號較特別,符號與a相關聯(lián);

頂點位置先找見,y軸作為參考線;

左同右異中為0,牢記心中莫混亂;

頂點坐標最重要,一般式配方它就現;

橫標即為對稱軸,縱標函數最值見.

若求對稱軸位置,符號反,一般、頂點、交點式,不同表達能互換。

反比例函數圖像與性質口訣

反比例函數有特點,雙曲線相背離得遠;

k為正,圖在一、三(象)限,k為負,圖在二、四(象)限;

圖在一、三函數減,兩個分支分別減.

圖在二、四正相反,兩個分支分別增;

線越長越近軸,永遠與軸不沾邊。

特殊三角函數值記憶

首先記住30度、45度、60度的正弦值、余弦值的分母都是2,

正切、余切的分母都是3,分子記口訣“123,321,三九二十七”既可。

三角函數的增減性:正增余減

平行四邊形的判定

要證平行四邊形,兩個條件才能行,

一證對邊都相等,或證對邊都平行,

一組對邊也可以,必須相等且平行.

對角線,是個寶,互相平分“跑不了”,

對角相等也有用,“兩組對角”才能成。

梯形問題的輔助線

移動梯形對角線,兩腰之和成一線;

平行移動一條腰,兩腰同在“△”現;

延長兩腰交一點,“△”中有平行線;

作出梯形兩高線,矩形顯示在眼前;

已知腰上一中線,莫忘作出中位線。

添加輔助線歌

輔助線,怎么添?找出規(guī)律是關鍵.

題中若有角(平)分線,可向兩邊作垂線;

線段垂直平分線,引向兩端把線連;

三角形邊兩中點,連接則成中位線;

三角形中有中線,延長中線翻一番。

圓的證明歌

圓的證明不算難,常把半徑直徑連;

有弦可作弦心距,它定垂直平分弦;

直徑是圓弦,直圓周角立上邊,

它若垂直平分弦,垂徑、射影響耳邊;

還有與圓有關角,勿忘相互有關聯(lián),

圓周、圓心、弦切角,細找關系把線連.

同弧圓周角相等,證題用它最多見,

圓中若有弦切角,夾弧找到就好辦;

圓有內接四邊形,對角互補記心間,

外角等于內對角,四邊形定內接圓;

直角相對或共弦,試試加個輔助圓;

若是證題打轉轉,四點共圓可解難;

要想證明圓切線,垂直半徑過外端,

直線與圓有共點,證垂直來半徑連,

直線與圓未給點,需證半徑作垂線;

四邊形有內切圓,對邊和等是條件;

如果遇到圓與圓,弄清位置很關鍵,

兩圓相切作公切,兩圓相交連公弦。


精選圖文

221381
Z范文網、范文協(xié)會網、范文檔案館、