2016年黑龍江高考數(shù)學(xué)專練練習(xí):解三角形及其應(yīng)用
一、選擇題
1.已知=,則tan α+=()
A.-8 B.8
C.1 D.-1
答案:A 解題思路:
=cos α-sin α=,
1-2sin αcos α=,即sin αcos α=-.
則tan α+=+===-8.故選A.
2.在ABC中,若tan Atan B=tan A+tan B+1,則cos C的值為()
A.-1/2 B.1/3
C. 1/2D.-1
答案:B 解題思路:由tan Atan B=tan A+tan B+1,可得=-1,即tan(A+B)=-1,又因?yàn)锳+B(0,π),所以A+B=,則C=,cos C=.
3.已知曲線y=2sincos與直線y=相交,若在y軸右側(cè)的交點(diǎn)自左向右依次記為P1,P2,P3,…,則||等于()
A.π B.2π
C.3π D.4π
答案:B 命題立意:本題考查三角恒等變換及向量的坐標(biāo)運(yùn)算,難度較小.
解題思路:由于f(x)=2sin2=2×=1+sin 2x,據(jù)題意,令1+sin 2x=,解得2x=2kπ-或2x=2kπ-(kZ),即x=kπ-或x=kπ-(kZ),故P1,P5,因此||==2π.
4.在ABC中,角A,B,C所對(duì)的邊分別為a,b,c,S表示ABC的面積,若acos B+bcos A=csin C,S=(b2+c2-a2),則B等于()
A.90° B.60°
C.45° D.30°
答案:C 解題思路:由正弦定理和已知條件知sin Acos B+sin Bcos A=sin2C,即sin(A+B)=sin2C, sin C=1,C=,從而S=ab=(b2+c2-a2)=(b2+b2),解得a=b,因此B=45°.
5.已知=k,0