數(shù)學(xué)與我們的生活有著密切的聯(lián)系,讓學(xué)生認識到現(xiàn)實生活中蘊涵著大量的數(shù)學(xué)信息,數(shù)學(xué)在現(xiàn)實生活中有著廣泛的應(yīng)用,并從中體會到數(shù)學(xué)的價值,增進對數(shù)學(xué)的理解和應(yīng)用數(shù)學(xué)的信心等。下面是小編整理的必修四數(shù)學(xué)第二章知識點,僅供參考希望能夠幫助到大家。
必修四數(shù)學(xué)第二章知識點
一、兩個定理
1、共線向量定理:
兩向量共線(平行)等價于兩個向量滿足數(shù)乘關(guān)系(與實數(shù)相乘的向量不是零向量),且數(shù)乘系數(shù)唯一。用坐標形式表示就是兩向量共線則兩向量坐標的“內(nèi)積等于外積”。此定理可以用來證向量平行或者使用向兩平行的條件。此定理的延伸是三點共線!三點共線可以向兩個向量的等式轉(zhuǎn)化:1. 三個點中任意找兩組點構(gòu)成的兩個向量共線,滿足數(shù)乘關(guān)系;2. 以同一個點為始點、三個點為終點構(gòu)造三個向量,其中一個可由另外兩個線性表示,且系數(shù)和為1。
2、平面向量基本定理:
平面內(nèi)兩個不共線的向量可以線性表示任何一個向量,且系數(shù)唯一。這兩個不共線的向量構(gòu)成一組基底,這兩個向量叫基向量。此定理的作用有兩個:1. 可以統(tǒng)一題目中向量的形式;2. 可以利用系數(shù)的唯一性求向量的系數(shù)(固定的算法模式)。
二、三種形式
平面向量有三種形式,字母形式、幾何形式、坐標形式。字母形式要注意帶箭頭,多考慮幾何形式畫圖解題,特別是能得到特殊的三角形和四邊形的情況,向量的坐標和點的坐標不要混淆,向量的坐標是其終點坐標減始點坐標,特殊情況下,若始點在原點,則向量的坐標就是終點坐標。
選擇合適的向量形式解決問題是解題的一個關(guān)鍵,優(yōu)先考慮用幾何形式畫圖做,然后是坐標形式,最后考慮字母形式的變形運算。
三、四種運算
加、減、數(shù)乘、數(shù)量積。前三種運算是線性運算,結(jié)果是向量(0乘以任何向量結(jié)果都是零向量,零向量乘以任何實數(shù)都是零向量);數(shù)量積不是線性運算,結(jié)果是實數(shù)(零向量乘以任何向量都是0)。線性運算符合所有的實數(shù)運算律,數(shù)量積不符合消去律和結(jié)合律。
向量運算也有三種形式:字母形式、幾何形式和坐標形式。
加減法的字母形式注意首尾相接和始點重合。數(shù)量積的字母形式公式很重要,要能熟練靈活的使用。
加減法的幾何意義是平行四邊形和三角形法則,數(shù)乘的幾何意義是長度的伸縮和方向的共線,數(shù)量積的幾何意義是一個向量的模乘以另一個向量在第一個向量方向上的射影的數(shù)量。向量的夾角用尖括號表示,是兩向量始點重合或者終點重合時形成的角,首尾相接形成的角為向量夾角的補角。射影數(shù)量有兩種求法:1. 向量的模乘以夾角余弦;2. 兩向量數(shù)量積除以另一向量的模。
加減法的坐標形式是橫縱坐標分別加減,數(shù)乘的坐標形式是實數(shù)乘以橫、縱坐標,數(shù)量積的坐標形式是橫坐標的乘積加縱坐標的乘積。
四、五個應(yīng)用
求長度、求夾角、證垂直、證平行、向量和差積的模與模的和差積的關(guān)系。前三個應(yīng)用是數(shù)量積的運算性質(zhì),證平行的數(shù)乘運算性質(zhì),零向量不能說和哪個向量方向相同或相反,規(guī)定零向量和任意向量都平行且都垂直;一個向量乘以自己再開方就是長度;兩個向量數(shù)量積除以模的乘積就是夾角的余弦;兩個向量滿足數(shù)乘關(guān)系則必定共線(平行)。一個向量除以自己的模得到和自己同方向的單位向量,加符號是反方向的單位向量
數(shù)學(xué)函數(shù)的值域與最值知識點
1、函數(shù)的值域取決于定義域和對應(yīng)法則,不論采用何種方法求函數(shù)值域都應(yīng)先考慮其定義域,求函數(shù)值域常用方法如下:
(1)直接法:亦稱觀察法,對于結(jié)構(gòu)較為簡單的函數(shù),可由函數(shù)的解析式應(yīng)用不等式的性質(zhì),直接觀察得出函數(shù)的值域.
(2)換元法:運用代數(shù)式或三角換元將所給的復(fù)雜函數(shù)轉(zhuǎn)化成另一種簡單函數(shù)再求值域,若函數(shù)解析式中含有根式,當根式里一次式時用代數(shù)換元,當根式里是二次式時,用三角換元.
(3)反函數(shù)法:利用函數(shù)f(x)與其反函數(shù)f-1(x)的定義域和值域間的關(guān)系,通過求反函數(shù)的定義域而得到原函數(shù)的值域,形如(a≠0)的函數(shù)值域可采用此法求得.
(4)配方法:對于二次函數(shù)或二次函數(shù)有關(guān)的函數(shù)的值域問題可考慮用配方法.
(5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函數(shù)的值域,不過應(yīng)注意條件“一正二定三相等”有時需用到平方等技巧.
(6)判別式法:把y=f(x)變形為關(guān)于x的一元二次方程,利用“△≥0”求值域.其題型特征是解析式中含有根式或分式.
(7)利用函數(shù)的單調(diào)性求值域:當能確定函數(shù)在其定義域上(或某個定義域的子集上)的單調(diào)性,可采用單調(diào)性法求出函數(shù)的值域.
(8)數(shù)形結(jié)合法求函數(shù)的值域:利用函數(shù)所表示的幾何意義,借助于幾何方法或圖象,求出函數(shù)的值域,即以數(shù)形結(jié)合求函數(shù)的值域.
2、求函數(shù)的最值與值域的區(qū)別和聯(lián)系
求函數(shù)最值的常用方法和求函數(shù)值域的方法基本上是相同的,事實上,如果在函數(shù)的值域中存在一個最小(大)數(shù),這個數(shù)就是函數(shù)的最小(大)值.因此求函數(shù)的最值與值域,其實質(zhì)是相同的,只是提問的角度不同,因而答題的方式就有所相異.
如函數(shù)的值域是(0,16],最大值是16,無最小值.再如函數(shù)的值域是(-∞,-2]∪[2,+∞),但此函數(shù)無最大值和最小值,只有在改變函數(shù)定義域后,如x>0時,函數(shù)的最小值為2.可見定義域?qū)瘮?shù)的值域或最值的影響.
3、函數(shù)的最值在實際問題中的應(yīng)用
函數(shù)的最值的應(yīng)用主要體現(xiàn)在用函數(shù)知識求解實際問題上,從文字表述上常常表現(xiàn)為“工程造價最低”,“利潤最大”或“面積(體積)最大(最小)”等諸多現(xiàn)實問題上,求解時要特別關(guān)注實際意義對自變量的制約,以便能正確求得最值.
高中學(xué)好數(shù)學(xué)的方法是什么
1.學(xué)數(shù)學(xué)要善于思考,自己想出來的答案遠比別人講出來的答案印象深刻。
2.課前要做好預(yù)習,這樣上數(shù)學(xué)課時才能把不會的知識點更好的消化吸收掉。
3.數(shù)學(xué)公式一定要記熟,并且還要會推導(dǎo),能舉一反三。
4.學(xué)好數(shù)學(xué)最基礎(chǔ)的就是把課本知識點及課后習題都掌握好。
5.數(shù)學(xué)80%的分數(shù)來源于基礎(chǔ)知識,20%的分數(shù)屬于難點,所以考120分并不難。