想要學(xué)好數(shù)學(xué),一定要多看例題,在看例題的過(guò)程中,大腦會(huì)將已有概念具體化,使對(duì)知識(shí)的理解更深刻,更透徹。下面是小編整理的人教版數(shù)學(xué)不等式與不等式組知識(shí)點(diǎn),僅供參考希望能夠幫助到大家。
人教版數(shù)學(xué)不等式與不等式組知識(shí)點(diǎn)
1.不等式的解集:一個(gè)含有未知數(shù)的不等式的所有解,組成這個(gè)不等式的解集。
2.一元一次不等式:不等式的左、右兩邊都是整式,只有一個(gè)未知數(shù),并且未知數(shù)的最高次數(shù)是1,像這樣的不等式,叫做一元一次不等式。
3.一元一次不等式組:一般地,關(guān)于同一未知數(shù)的幾個(gè)一元一次不等式合在一起,就組成了一個(gè)一元一次不等式組。
4.一元一次不等式組的解集:一元一次不等式組中各個(gè)不等式的解集的公共部分,叫做這個(gè)一元一次不等式組的解集。
5.不等式的性質(zhì):
不等式的基本性質(zhì)1:不等式的兩邊都加上(或減去)同一個(gè)數(shù)(或式子),不等號(hào)的方向不變。
不等式的基本性質(zhì)2:不等式的兩邊都乘以(或除以)同一個(gè)正數(shù),不等號(hào)的方向不變。
不等式的基本性質(zhì)3:不等式的兩邊都乘以(或除以)同一個(gè)負(fù)數(shù),不等號(hào)的方向改變。
數(shù)學(xué)整式概念知識(shí)點(diǎn)
1、單項(xiàng)式和多項(xiàng)式統(tǒng)稱(chēng)為整式。
2、單項(xiàng)式或多項(xiàng)式都是整式。
3、整式不一定是單項(xiàng)式。
4、整式不一定是多項(xiàng)式。
5、分母中含有字母的代數(shù)式不是整式;而是今后將要學(xué)習(xí)的分式。
初中數(shù)學(xué)二元一次方程組知識(shí)點(diǎn)
1.二元一次方程:含有兩個(gè)未知數(shù),并且含未知數(shù)項(xiàng)的次數(shù)是1,這樣的方程是二元一次方程.注意:一般說(shuō)二元一次方程有無(wú)數(shù)個(gè)解.
2.二元一次方程組:兩個(gè)二元一次方程聯(lián)立在一起是二元一次方程組.
3.二元一次方程組的解:使二元一次方程組的兩個(gè)方程,左右兩邊都相等的兩個(gè)未知數(shù)的值,叫二元一次方程組的解.注意:一般說(shuō)二元一次方程組只有解(即公共解).
4.二元一次方程組的解法:
(1)代入消元法;(2)加減消元法;
(3)注意:判斷如何解簡(jiǎn)單是關(guān)鍵.
※5.一次方程組的應(yīng)用:
(1)對(duì)于一個(gè)應(yīng)用題設(shè)出的未知數(shù)越多,列方程組可能容易一些,但解方程組可能比較麻煩,反之則難列易解
(2)對(duì)于方程組,若方程個(gè)數(shù)與未知數(shù)個(gè)數(shù)相等時(shí),一般可求出未知數(shù)的值;
(3)對(duì)于方程組,若方程個(gè)數(shù)比未知數(shù)個(gè)數(shù)少一個(gè)時(shí),一般求不出未知數(shù)的值,但總可以求出任何兩個(gè)未知數(shù)的關(guān)系.
一元一次不等式(組)
1.不等式:用不等號(hào),把兩個(gè)代數(shù)式連接起來(lái)的式子叫不等式.
2.不等式的基本性質(zhì):
不等式的基本性質(zhì)1:不等式兩邊都加上(或減去)同一個(gè)數(shù)或同一個(gè)整式,不等號(hào)的方向不變;
不等式的基本性質(zhì)2:不等式兩邊都乘以(或除以)同一個(gè)正數(shù),不等號(hào)的方向不變;
不等式的基本性質(zhì)3:不等式兩邊都乘以(或除以)同一個(gè)負(fù)數(shù),不等號(hào)的方向要改變.
3.不等式的解集:能使不等式成立的未知數(shù)的值,叫做這個(gè)不等式的解;不等式所有解的集合,叫做這個(gè)不等式的解集.
4.一元一次不等式:只含有一個(gè)未知數(shù),并且未知數(shù)的次數(shù)是1,系數(shù)不等于零的不等式,叫做一元一次不等式;它的標(biāo)準(zhǔn)形式是ax+b0或ax+b0,(a0).
5.一元一次不等式的解法:一元一次不等式的解法與解一元一次方程的解法類(lèi)似,但一定要注意不等式性質(zhì)3的應(yīng)用;注意:在數(shù)軸上表示不等式的解集時(shí),要注意空圈和實(shí)點(diǎn).