學(xué)習(xí)數(shù)學(xué)課堂練習(xí)是最直接的反饋,一定要認(rèn)真對待。不要急于完成作業(yè),要先看看課堂筆記,回顧學(xué)習(xí)內(nèi)容,加深記憶與理解。下面是小編整理的數(shù)學(xué)六年級下冊第二單元知識點,僅供參考希望能夠幫助到大家。
數(shù)學(xué)六年級下冊第二單元知識點
1、認(rèn)識圓柱和圓錐,掌握它們的基本特征。認(rèn)識圓柱的底面、側(cè)面和高。認(rèn)識圓錐的底面和高。
2、探索并掌握圓柱的側(cè)面積、表面積的計算方法,以及圓柱、圓錐體積的計算公式,會運用公式計算體積,解決有關(guān)的簡單實際問題。
3、通過觀察、設(shè)計和制作圓柱、圓錐模型等活動,了解平面圖形與立體圖形之間的聯(lián)系,發(fā)展學(xué)生的空間觀念。
4、圓柱的兩個圓面叫做底面,周圍的面叫做側(cè)面,底面是平面,側(cè)面是曲面,。
5、圓柱的側(cè)面沿高展開后是長方形,長方形的長等于圓柱底面的周長,長方形的寬等于圓柱的高,當(dāng)?shù)酌嬷荛L和高相等時,側(cè)面沿高展開后是一個正方形。
6、圓柱的表面積 = 圓柱的側(cè)面積 +底面積×2 即S表=S側(cè)+S底×2或2πr×h + 2×πr2
7、圓柱的側(cè)面積 = 底面周長×高 即S側(cè)=Ch 或 2πr×h
8、圓柱的體積=圓柱的底面積×高, 即V=sh或 πr2×h
(進一法:實際中,使用的材料都要比計算的結(jié)果多一些 ,因此,要保留數(shù)的時候,省略的位上的是4或者比4小,都要向前一位進1。這種取近似值的方法叫做進一法。)
9、圓錐只有一個底面,底面是個圓。圓錐的側(cè)面是個曲面。
10、從圓錐的頂點到底面圓心的距離是圓錐的高。圓錐只有一條高。(測量圓錐的高:先把圓錐的底面放平,用一塊平板水平地放在圓錐的頂點上面,豎直地量出平板和底面之間的距離。)
11、把圓錐的側(cè)面展開得到一個扇形。
12、圓錐的體積等于與它等底等高的圓柱體積的三分之一,即V錐=1/3 Sh 或 πr2×h÷3
13、常見的圓柱圓錐解決問題:①、壓路機壓過路面面積(求側(cè)面積);②、壓路機壓過路面長度(求底面周長);③、水桶鐵皮(求側(cè)面積和一個底面積);④、廚師帽(求側(cè)面積和一個底面積);通風(fēng)管(求側(cè)面積)。
小學(xué)數(shù)學(xué)基數(shù)和序數(shù)簡介
基數(shù):一、二、三、四、五、六、七、八、九、十。
序數(shù):第一、第二、第三、第四、第五、第六、第七、第八、第九、第十。
基數(shù)在數(shù)學(xué)上,是集合論中刻畫任意集合大小的一個概念。兩個能夠建立元素間一一對應(yīng)的集合稱為互相對等集合。例如3個人的集合和3匹馬的集合可以建立一一對應(yīng),是兩個對等的集合。
序數(shù)原來被定義為良序集的序型,而良序集A的序型,作為從A的元素的屬性中抽象出來的結(jié)果,是所有與A序同構(gòu)的一切良序集的共同特征,即定義為{B|BA}。
數(shù)學(xué)圖形的變換知識點
1、軸對稱圖形:把一個圖形沿著某一條直線對折,兩邊能夠完全重合,這樣的圖形叫做軸對稱圖形,這條直線叫做對稱軸。
2、成軸對稱圖形的特征和性質(zhì):①對稱點到對稱軸的距離相等;②對稱點的連線與對稱軸垂直;③對稱軸兩邊的圖形大小形狀完全相同。
3、物體旋轉(zhuǎn)時應(yīng)抓住三點:①旋轉(zhuǎn)中心;②旋轉(zhuǎn)方向;③旋轉(zhuǎn)角度。旋轉(zhuǎn)只改變物體的位置,不改變物體的形狀、大小。