學習數(shù)學課堂練習是最直接的反饋,一定要認真對待。不要急于完成作業(yè),要先看看課堂筆記,回顧學習內(nèi)容,加深記憶與理解。下面是小編整理的八年級數(shù)學分式知識點,僅供參考希望能夠幫助到大家。
八年級數(shù)學分式知識點
一分式
①整式A除以整式B,如果除式B中含有分母,那么這個就是分式,對于任何一個分式,分母不為0。
②分式的分子與分母同乘以或除以同一個不等于0的整式,分式的值不變。
二分式的運算
乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。
除法:除以一個分式等于乘以這個分式的倒數(shù)。
加減法:①同分母分式相加減,分母不變,把分子相加減。②異分母的分式先通分,化為同分母的分式,再加減。
分式方程:①分母中含有未知數(shù)的.方程叫分式方程。②使方程的分母為0的解稱為原方程的增根。
三分式的約分
1.定義:根據(jù)分式的基本性質(zhì),把一個分式的分子與分母的公因式約去,叫做分式的約分。
2.步驟:把分式分子分母因式分解,然后約去分子與分母的公因。
3.注意:①分式的分子與分母均為單項式時可直接約分,約去分子、分母系數(shù)的最大公約數(shù),然后約去分子分母相同因式的最低次冪。
②分子分母若為多項式,先對分子分母進行因式分解,再約分。
4.最簡分式的定義:一個分式的分子與分母沒有公因式時,叫做最簡分式。
◆約分時。分子分母公因式的確定方法:
1)系數(shù)取分子、分母系數(shù)的最大公約數(shù)作為公因式的系數(shù).
2)取各個公因式的最低次冪作為公因式的因式.
3)如果分子、分母是多項式,則應(yīng)先把分子、分母分解因式,然后判斷公因式.
四、分式的通分
1.定義:把幾個異分母的分式分別化成與原來的分式相等的同分母分式,叫做分式的通分。
(依據(jù):分式的基本性質(zhì)!)
2.最簡公分母:取各分母所有因式的最高次冪的積作公分母,這樣的公分母叫做最簡公分母。
◆通分時,最簡公分母的確定方法:
1.系數(shù)取各個分母系數(shù)的最小公倍數(shù)作為最簡公分母的系數(shù).
2.取各個公因式的最高次冪作為最簡公分母的因式.
3.如果分母是多項式,則應(yīng)先把每個分母分解因式,然后判斷最簡公分母.
怎么樣才能打好數(shù)學基礎(chǔ)
第一,重視數(shù)學公式。有很多同學數(shù)學學不好就是因為對概念和公式不夠重視,具體的表現(xiàn)為對數(shù)學概念的理解只是停留在表明,不去挖掘引申的含義,對數(shù)學概念的特殊情況不明白。還有對數(shù)學概念和公式有的學生只是死記硬背,學生缺乏對概念的理解。
還有一部分同學不重視對數(shù)學公式的記憶。其實記憶是理解的基礎(chǔ)。我們設(shè)想如果你不能將數(shù)學公式爛熟于心,那么又怎么能夠在數(shù)學題目中熟練的應(yīng)用呢?
第二,就是總結(jié)那些相似的數(shù)學題目。當我們養(yǎng)成了總結(jié)歸納的習慣,那么的學生就會知道自己在解決數(shù)學題目的時候哪些是自己比較擅長的,哪些是自己還不足的。
同時善于總結(jié)也會明白自己掌握哪些數(shù)學的解題方法,只有這樣你才能夠真正掌握了數(shù)學的解題技巧。其實,做到總結(jié)和歸納是學會數(shù)學的關(guān)鍵,如果學生不會做到這一點那么久而久之,不會的數(shù)學題目還是不會。
自然數(shù)的性質(zhì)和特點
1、有序性。自然數(shù)的有序性是指,自然數(shù)可以從0開始,不重復(fù)也不遺漏地排成一個數(shù)列:0,1,2,3,…這個數(shù)列叫自然數(shù)列。
2、無限性。自然數(shù)集是一個無窮集合,自然數(shù)列可以無止境地寫下去。
3、傳遞性:設(shè) n1,n2,n3 都是自然數(shù),若 n1>n2,n2>n3,那么 n1>n3。
4、三岐性:對于任意兩個自然數(shù)n1,n2,有且只有下列三種關(guān)系之一:n1>n2,n1=n2或n1<n2。< p="">
5、最小數(shù)原理:自然數(shù)集合的任一非空子集中必有最小的數(shù)。
數(shù)學導(dǎo)數(shù)知識點總結(jié)
![](/skin/tiku/images/icon_star.png)
![](/skin/tiku/images/icon_star.png)
![](/skin/tiku/images/icon_star.png)
![](/skin/tiku/images/icon_star.png)
![](/skin/tiku/images/icon_star.png)
上一篇:八年級數(shù)學分式知識點