學(xué)好數(shù)學(xué)要善于總結(jié)自己掌握的數(shù)學(xué)的解題方法,只有這樣你才能夠真正掌握了數(shù)學(xué)的解題技巧。做到總結(jié)和歸納是學(xué)會數(shù)學(xué)的關(guān)鍵。下面是小編整理的數(shù)學(xué)向量知識點(diǎn)提綱,僅供參考希望能夠幫助到大家。
數(shù)學(xué)向量知識點(diǎn)提綱
向量的概念、向量的基本定理
【內(nèi)容解讀】了解向量的實(shí)際背景,掌握向量、零向量、平行向量、共線向量、單位向量、相等向量等概念,理解向量的幾何表示,掌握平面向量的基本定理。
注意對向量概念的理解,向量是可以自由移動的,平移后所得向量與原向量相同;兩個向量無法比較大小,它們的??杀容^大小。
考點(diǎn)二:向量的運(yùn)算
【內(nèi)容解讀】向量的運(yùn)算要求掌握向量的加減法運(yùn)算,會用平行四邊形法則、三角形法則進(jìn)行向量的加減運(yùn)算;掌握實(shí)數(shù)與向量的積運(yùn)算,理解兩個向量共線的含義,會判斷兩個向量的平行關(guān)系;掌握向量的數(shù)量積的運(yùn)算,體會平面向量的數(shù)量積與向量投影的關(guān)系,并理解其幾何意義,掌握數(shù)量積的坐標(biāo)表達(dá)式,會進(jìn)行平面向量積的運(yùn)算,能運(yùn)用數(shù)量積表示兩個向量的夾角,會用向量積判斷兩個平面向量的垂直關(guān)系。
【命題規(guī)律】命題形式主要以選擇、填空題型出現(xiàn),難度不大,考查重點(diǎn)為模和向量夾角的定義、夾角公式、向量的坐標(biāo)運(yùn)算,有時也會與其它內(nèi)容相結(jié)合。
考點(diǎn)三:定比分點(diǎn)
【內(nèi)容解讀】掌握線段的定比分點(diǎn)和中點(diǎn)坐標(biāo)公式,并能熟練應(yīng)用,求點(diǎn)分有向線段所成比時,可借助圖形來幫助理解。
【命題規(guī)律】重點(diǎn)考查定義和公式,主要以選擇題或填空題型出現(xiàn),難度一般。由于向量應(yīng)用的廣泛性,經(jīng)常也會與三角函數(shù),解析幾何一并考查,若出現(xiàn)在解答題中,難度以中檔題為主,偶爾也以難度略高的題目。
考點(diǎn)四:向量與三角函數(shù)的綜合問題
【內(nèi)容解讀】向量與三角函數(shù)的綜合問題是高考經(jīng)常出現(xiàn)的問題,考查了向量的知識,三角函數(shù)的知識,達(dá)到了高考中試題的覆蓋面的要求。
【命題規(guī)律】命題以三角函數(shù)作為坐標(biāo),以向量的坐標(biāo)運(yùn)算或向量與解三角形的內(nèi)容相結(jié)合,也有向量與三角函數(shù)圖象平移結(jié)合的問題,屬中檔偏易題。
考點(diǎn)五:平面向量與函數(shù)問題的交匯
【內(nèi)容解讀】平面向量與函數(shù)交匯的問題,主要是向量與二次函數(shù)結(jié)合的問題為主,要注意自變量的取值范圍。
【命題規(guī)律】命題多以解答題為主,屬中檔題。
考點(diǎn)六:平面向量在平面幾何中的應(yīng)用
【內(nèi)容解讀】向量的坐標(biāo)表示實(shí)際上就是向量的代數(shù)表示.在引入向量的坐標(biāo)表示后,使向量之間的運(yùn)算代數(shù)化,這樣就可以將“形”和“數(shù)”緊密地結(jié)合在一起.因此,許多平面幾何問題中較難解決的問題,都可以轉(zhuǎn)化為大家熟悉的代數(shù)運(yùn)算的論證.也就是把平面幾何圖形放到適當(dāng)?shù)淖鴺?biāo)系中,賦予幾何圖形有關(guān)點(diǎn)與平面向量具體的坐標(biāo),這樣將有關(guān)平面幾何問題轉(zhuǎn)化為相應(yīng)的代數(shù)運(yùn)算和向量運(yùn)算,從而使問題得到解決.
【命題規(guī)律】命題多以解答題為主,屬中等偏難的試題。
成績不理想的原因
1、對知識點(diǎn)的理解停留在一知半解的層次上;
2、解題始終不能把握其中關(guān)鍵的數(shù)學(xué)技巧,孤立的看待每一道題,缺乏舉一反三的能力;
3、解題時,小錯誤太多,始終不能完整的解決問題;
4、解題效率低,在規(guī)定的時間內(nèi)不能完成一定量的題目,不適應(yīng)考試節(jié)奏;
5、未養(yǎng)成總結(jié)歸納的習(xí)慣,不能習(xí)慣性的歸納所學(xué)的知識點(diǎn);
6、學(xué)習(xí)缺少科學(xué)性,上課不認(rèn)真記筆記,課后不能及時鞏固、復(fù)習(xí);忙于應(yīng)付作業(yè),對知識不求甚解。
7、忽視基礎(chǔ),有些“自我感覺良好”的學(xué)生,常輕視基礎(chǔ)知識、基本技能和基本方法的學(xué)習(xí)與訓(xùn)練,經(jīng)常是知道怎么做就算了,而不去認(rèn)真演算書寫,反而對難題很感興趣,以顯示自己的“水平” ,好高騖遠(yuǎn),重“ 量” 輕“ 質(zhì)”,沒有堅(jiān)實(shí)的基礎(chǔ)和基本功,到考試時取得不了高分;
8、忽視作業(yè)或練習(xí),缺乏對問題的深入思考,有時練習(xí)冊上的答案由于印刷錯誤,孩子們作業(yè)做完后核對答案時不相信自己的結(jié)論,把自己的答案一劃,把錯誤答案抄上;書寫規(guī)范性差;
9、周練考試出錯率高,一種是一時想不出怎么做,事后會做,臨場狀態(tài)不好;第二種是表面上會做,但由于審題不仔細(xì),對概念理解不清,計(jì)算不準(zhǔn)確;第三種是時間不夠,解題速度慢,平時做題習(xí)慣不好,不講速度;第四種是根本做不出來,基本功不行,更欠缺融會貫通能力。
集合的特性
1、確定性
給定一個集合,任給一個元素,該元素或者屬于或者不屬于該集合,二者必居其一,不允許有模棱兩可的情況出現(xiàn)。
2、互異性
一個集合中,任何兩個元素都認(rèn)為是不相同的,即每個元素只能出現(xiàn)一次。有時需要對同一元素出現(xiàn)多次的情形進(jìn)行刻畫,可以使用多重集,其中的元素允許出現(xiàn)多次。
3、無序性
一個集合中,每個元素的地位都是相同的,元素之間是無序的。集合上可以定義序關(guān)系,定義了序關(guān)系后,元素之間就可以按照序關(guān)系排序。但就集合本身的特性而言,元素之間沒有必然的序。