中文字幕人妻色偷偷久久_天天鲁一鲁摸一摸爽一爽_最新亚洲人成网站在线观看_999久久久免费精品国产_久久精品丝袜高跟鞋

歡迎訪一網(wǎng)寶!您身邊的知識(shí)小幫手,專注做最新的學(xué)習(xí)參考資料!

2021小學(xué)二年級(jí)上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)

一網(wǎng)寶 分享 時(shí)間: 加入收藏 我要投稿 點(diǎn)贊

數(shù)學(xué)與我們的生活息息相關(guān),使學(xué)生認(rèn)識(shí)到現(xiàn)實(shí)生活中存在著大量的數(shù)學(xué)信息,數(shù)學(xué)在現(xiàn)實(shí)生活中有著廣泛的應(yīng)用,實(shí)現(xiàn)了數(shù)學(xué)的價(jià)值,增強(qiáng)了對(duì)數(shù)學(xué)的理解和應(yīng)用數(shù)學(xué)的信心。下面是小編為大家整理的有關(guān)數(shù)學(xué)必修一期末知識(shí)點(diǎn)總結(jié)歸納,希望對(duì)你們有幫助!

數(shù)學(xué)必修一期末知識(shí)點(diǎn)總結(jié)歸納

一:集合的含義與表示

1、集合的含義:集合為一些確定的、不同的東西的全體,人們能意識(shí)到這些東西,并且能判斷一個(gè)給定的東西是否屬于這個(gè)整體。

把研究對(duì)象統(tǒng)稱為元素,把一些元素組成的總體叫集合,簡(jiǎn)稱為集。

2、集合的中元素的三個(gè)特性:

(1)元素的確定性:集合確定,則一元素是否屬于這個(gè)集合是確定的:屬于或不屬于。

(2)元素的互異性:一個(gè)給定集合中的元素是的,不可重復(fù)的。

(3)元素的無(wú)序性:集合中元素的位置是可以改變的,并且改變位置不影響集合

3、集合的表示:{…}

(1)用大寫(xiě)字母表示集合:A={我校的籃球隊(duì)員},B={1,2,3,4,5}

(2)集合的表示方法:列舉法與描述法。

a、列舉法:將集合中的元素一一列舉出來(lái){a,b,c……}

b、描述法:

①區(qū)間法:將集合中元素的公共屬性描述出來(lái),寫(xiě)在大括號(hào)內(nèi)表示集合。

{x?R|x-3>2},{x|x-3>2}

②語(yǔ)言描述法:例:{不是直角三角形的三角形}

③Venn圖:畫(huà)出一條封閉的曲線,曲線里面表示集合。

4、集合的分類:

(1)有限集:含有有限個(gè)元素的集合

(2)無(wú)限集:含有無(wú)限個(gè)元素的集合

(3)空集:不含任何元素的集合

5、元素與集合的關(guān)系:

(1)元素在集合里,則元素屬于集合,即:a?A

(2)元素不在集合里,則元素不屬于集合,即:a¢A

注意:常用數(shù)集及其記法:

非負(fù)整數(shù)集(即自然數(shù)集)記作:N

正整數(shù)集N或N+

整數(shù)集Z

有理數(shù)集Q

實(shí)數(shù)集R

數(shù)學(xué)必修1知識(shí)點(diǎn)歸納

1、柱、錐、臺(tái)、球的結(jié)構(gòu)特征

(1)棱柱:

幾何特征:兩底面是對(duì)應(yīng)邊平行的全等多邊形;側(cè)面、對(duì)角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形.

(2)棱錐

幾何特征:側(cè)面、對(duì)角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點(diǎn)到截面距離與高的比的平方.

(3)棱臺(tái):

幾何特征:①上下底面是相似的平行多邊形②側(cè)面是梯形③側(cè)棱交于原棱錐的頂點(diǎn)

(4)圓柱:定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成

幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側(cè)面展開(kāi)圖是一個(gè)矩形.

(5)圓錐:定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成

幾何特征:①底面是一個(gè)圓;②母線交于圓錐的頂點(diǎn);③側(cè)面展開(kāi)圖是一個(gè)扇形.

(6)圓臺(tái):定義:以直角梯形的垂直與底邊的腰為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成

幾何特征:①上下底面是兩個(gè)圓;②側(cè)面母線交于原圓錐的頂點(diǎn);③側(cè)面展開(kāi)圖是一個(gè)弓形.

(7)球體:定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體

幾何特征:①球的截面是圓;②球面上任意一點(diǎn)到球心的距離等于半徑.

3、空間幾何體的直觀圖——斜二測(cè)畫(huà)法

斜二測(cè)畫(huà)法特點(diǎn):①原來(lái)與x軸平行的線段仍然與x平行且長(zhǎng)度不變;

②原來(lái)與y軸平行的線段仍然與y平行,長(zhǎng)度為原來(lái)的一半.

4、柱體、錐體、臺(tái)體的表面積與體積

(1)幾何體的表面積為幾何體各個(gè)面的面積的和.

(2)特殊幾何體表面積公式(c為底面周長(zhǎng),h為高,為斜高,l為母線)

(3)柱體、錐體、臺(tái)體的體積公式

高三數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)

1. 對(duì)于集合,一定要抓住集合的代表元素,及元素的“確定性、互異性、無(wú)序性”。

中元素各表示什么?

注重借助于數(shù)軸和文氏圖解集合問(wèn)題。

空集是一切集合的子集,是一切非空集合的真子集。

3. 注意下列性質(zhì):

(3)德摩根定律:

4. 你會(huì)用補(bǔ)集思想解決問(wèn)題嗎?(排除法、間接法)

的取值范圍。

6. 命題的四種形式及其相互關(guān)系是什么?

(互為逆否關(guān)系的命題是等價(jià)命題。)

原命題與逆否命題同真、同假;逆命題與否命題同真同假。

7. 對(duì)映射的概念了解嗎?映射f:A→B,是否注意到A中元素的任意性和B中與之對(duì)應(yīng)元素的性,哪幾種對(duì)應(yīng)能構(gòu)成映射?

(一對(duì)一,多對(duì)一,允許B中有元素?zé)o原象。)

8. 函數(shù)的三要素是什么?如何比較兩個(gè)函數(shù)是否相同?

(定義域、對(duì)應(yīng)法則、值域)

9. 求函數(shù)的定義域有哪些常見(jiàn)類型?

10. 如何求復(fù)合函數(shù)的定義域?

義域是_____________。

11. 求一個(gè)函數(shù)的解析式或一個(gè)函數(shù)的反函數(shù)時(shí),注明函數(shù)的定義域了嗎?

12. 反函數(shù)存在的條件是什么?

(一一對(duì)應(yīng)函數(shù))

求反函數(shù)的步驟掌握了嗎?

(①反解x;②互換x、y;③注明定義域)

13. 反函數(shù)的性質(zhì)有哪些?

①互為反函數(shù)的圖象關(guān)于直線y=x對(duì)稱;

②保存了原來(lái)函數(shù)的單調(diào)性、奇函數(shù)性;

14. 如何用定義證明函數(shù)的單調(diào)性?

(取值、作差、判正負(fù))

如何判斷復(fù)合函數(shù)的單調(diào)性?

∴……)

15. 如何利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性?

值是( )

A. 0B. 1C. 2D. 3

∴a的值為3)

16. 函數(shù)f(x)具有奇偶性的必要(非充分)條件是什么?

(f(x)定義域關(guān)于原點(diǎn)對(duì)稱)

注意如下結(jié)論:

(1)在公共定義域內(nèi):兩個(gè)奇函數(shù)的乘積是偶函數(shù);兩個(gè)偶函數(shù)的乘積是偶函數(shù);一個(gè)偶函數(shù)與奇函數(shù)的乘積是奇函數(shù)。

17. 你熟悉周期函數(shù)的定義嗎?

函數(shù),T是一個(gè)周期。)


精選圖文

221381
Z范文網(wǎng)、范文協(xié)會(huì)網(wǎng)、范文檔案館