中文字幕人妻色偷偷久久_天天鲁一鲁摸一摸爽一爽_最新亚洲人成网站在线观看_999久久久免费精品国产_久久精品丝袜高跟鞋

歡迎訪一網(wǎng)寶!您身邊的知識小幫手,專注做最新的學(xué)習(xí)參考資料!

七年級數(shù)學(xué)上冊考前必備知識點總結(jié)

一網(wǎng)寶 分享 時間: 加入收藏 我要投稿 點贊

現(xiàn)實生活中,我們會看到用正多邊形拼成的各種圖案,例如,平時在家里、在商店里、在中心廣場、進入賓館、飯店等等許多地方會看到瓷磚。他們通常都是有不同的形狀和顏色。其實,這里面就有數(shù)學(xué)問題。下面是小編為大家整理的有關(guān)九年級下冊數(shù)學(xué)必備考前重要知識點匯集,希望對你們有幫助!

九年級下冊數(shù)學(xué)必備考前重要知識點匯集

【直線與圓的位置關(guān)系】

①直線和圓無公共點,稱相離。AB與圓O相離,d>r。

②直線和圓有兩個公共點,稱相交,這條直線叫做圓的割線。AB與⊙O相交,d

③直線和圓有且只有一公共點,稱相切,這條直線叫做圓的切線,這個的公共點叫做切點。AB與⊙O相切,d=r。(d為圓心到直線的距離)

平面內(nèi),直線Ax+By+C=0與圓x^2+y^2+Dx+Ey+F=0的位置關(guān)系判斷一般方法是:

1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x^2+y^2+Dx+Ey+F=0,即成為一個關(guān)于x的方程

如果b^2-4ac>0,則圓與直線有2交點,即圓與直線相交。

如果b^2-4ac=0,則圓與直線有1交點,即圓與直線相切。

如果b^2-4ac<0,則圓與直線有0交點,即圓與直線相離。

2.如果B=0即直線為Ax+C=0,即x=-C/A,它平行于y軸(或垂直于x軸),將x^2+y^2+Dx+Ey+F=0化為(x-a)^2+(y-b)^2=r^2。令y=b,求出此時的兩個x值x1、x2,并且規(guī)定x1

當x=-C/Ax2時,直線與圓相離;

【旋轉(zhuǎn)變換】

1.概念:在平面內(nèi),將一個圖形繞一個定點沿某個方向轉(zhuǎn)動一個角度,這樣的圖形運動叫做旋轉(zhuǎn)。

說明:(1)圖形的旋轉(zhuǎn)是由旋轉(zhuǎn)中心和旋轉(zhuǎn)的角度所決定的;(2)旋轉(zhuǎn)過程中旋轉(zhuǎn)中心始終保持不動.(3)旋轉(zhuǎn)過程中旋轉(zhuǎn)的方向是相同的.(4)旋轉(zhuǎn)過程靜止時,圖形上一個點的旋轉(zhuǎn)角度是一樣的.⑤旋轉(zhuǎn)不改變圖形的大小和形狀.

2.性質(zhì):(1)對應(yīng)點到旋轉(zhuǎn)中心的距離相等;

(2)對應(yīng)點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;

(3)旋轉(zhuǎn)前、后的圖形全等.

3.旋轉(zhuǎn)作圖的步驟和方法:(1)確定旋轉(zhuǎn)中心及旋轉(zhuǎn)方向、旋轉(zhuǎn)角;(2)找出圖形的關(guān)鍵點;(3)將圖形的關(guān)鍵點和旋轉(zhuǎn)中心連接起來,然后按旋轉(zhuǎn)方向分別將它們旋轉(zhuǎn)一個旋轉(zhuǎn)角度數(shù),得到這些關(guān)鍵點的對應(yīng)點;(4)按原圖形順次連接這些對應(yīng)點,所得到的圖形就是旋轉(zhuǎn)后的圖形.

說明:在旋轉(zhuǎn)作圖時,一對對應(yīng)點與旋轉(zhuǎn)中心的夾角即為旋轉(zhuǎn)角.

【圓周角】

1、定義:頂點在圓上,角的兩邊都與圓相交的角。(兩條件缺一不可)

2、定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半。

3、推論:1)在同圓或等圓中,相等的圓周角所對的弧相等。

2)直徑(半圓)所對的圓周角是直角;900的圓周角所對的弦為直徑。(①常見輔助線:有直徑可構(gòu)成直角,有900圓周角可構(gòu)成直徑;②找圓心的方法:作兩個900圓周角所對兩弦交點)

4、圓內(nèi)接四邊形的性質(zhì)定理:圓內(nèi)接四邊形的對角互補。(任意一個外角等于它的內(nèi)對角)

補充:1、兩條平行弦所夾的弧相等。

2、圓的兩條弦1)在圓外相交時,所夾角等于它所對的兩條弧度數(shù)差的一半。2)在圓內(nèi)相交時,所夾的角等于它所夾兩條弧度數(shù)和的一半。

3、同弧所對的(在弧的同側(cè))圓內(nèi)部角其次是圓周角,最小的是圓外角。

九年級下冊數(shù)學(xué)知識點歸納

一、平行線分線段成比例定理及其推論:

1.定理:三條平行線截兩條直線,所得的對應(yīng)線段成比例。

2.推論:平行于三角形一邊的直線截其他兩邊(或兩邊的延長線)所得的對應(yīng)線段成比例。

3.推論的逆定理:如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應(yīng)線段成比例,那么這條線段平行于三角形的第三邊。

二、相似預(yù)備定理:

平行于三角形的一邊,并且和其他兩邊相交的直線,截得的三角形的三邊與原三角形三邊對應(yīng)成比例。

三、相似三角形:

1.定義:對應(yīng)角相等,對應(yīng)邊成比例的三角形叫做相似三角形。

2.性質(zhì):(1)相似三角形的對應(yīng)角相等;

(2)相似三角形的對應(yīng)線段(邊、高、中線、角平分線)成比例;

(3)相似三角形的周長比等于相似比,面積比等于相似比的平方。

說明:①等高三角形的面積比等于底之比,等底三角形的面積比等于高之比;②要注意兩個圖形元素的對應(yīng)。

3.判定定理:

(1)兩角對應(yīng)相等,兩三角形相似;

(2)兩邊對應(yīng)成比例,且夾角相等,兩三角形相似;

(3)三邊對應(yīng)成比例,兩三角形相似;

(4)如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角對應(yīng)成比例,那么這兩個直角三角形相似。

初三數(shù)學(xué)下冊知識點整理

1.解直角三角形

1.1.銳角三角函數(shù)

銳角a的正弦、余弦和正切統(tǒng)稱∠a的三角函數(shù)。

如果∠a是Rt△ABC的一個銳角,則有

1.2.銳角三角函數(shù)的計算

1.3.解直角三角形

在直角三角形中,由已知的一些邊、角,求出另一些邊、角的過程,叫做解直角三角形。

2.直線與圓的位置關(guān)系

2.1.直線與圓的位置關(guān)系

當直線與圓有兩個公共點時,叫做直線與圓相交;當直線與圓有公共點時,叫做直線與圓相切,公共點叫做切點;當直線與圓沒有公共點時,叫做直線與圓相離。

直線與圓的位置關(guān)系有以下定理:

直線與圓相切的判定定理:

經(jīng)過半徑的外端并且垂直這條半徑的直線是圓的切線。

圓的切線性質(zhì):

經(jīng)過切點的半徑垂直于圓的切線。

2.2.切線長定理

從圓外一點作圓的切線,通常我們把圓外這一點到切點間的線段的長叫做切線長。

切線長定理:過圓外一點所作的圓的兩條切線長相等。

2.3.三角形的內(nèi)切圓

與三角形三邊都相切的圓叫做三角形的內(nèi)切圓,圓心叫做三角形的內(nèi)心,三角形叫做圓的外切三角形。三角形的內(nèi)心是三角形的三條角平分線的交點。

3.三視圖與表面展開圖

3.1.投影

物體在光線的照射下,在某個平面內(nèi)形成的影子叫做投影。光線叫做投影線,投影所在的平面叫做投影面。由平行的投射線所形成的投射叫做平行投影。

可以把太陽光線、探照燈的光線看成平行光線,它們所形成的投影就是平行投影。

3.2.簡單幾何體的三視圖

物體在正投影面上的正投影叫做主視圖,在水平投影面上的正投影叫做俯視圖,在側(cè)投影面上的正投影叫做左視圖。

主視圖、左視圖和俯視圖合稱三視圖。

產(chǎn)生主視圖的投影線方向也叫做主視方向。

3.3.由三視圖描述幾何體

三視圖不僅反映了物體的形狀,而且反映了各個方向的尺寸大小。

3.4.簡單幾何體的表面展開圖

將幾何體沿著某些棱“剪開”,并使各個面連在一起,鋪平所得到的平面圖形稱為幾何體的表面展開圖。

圓柱可以看做由一個矩形ABCD繞它的一條邊BC旋轉(zhuǎn)一周,其余各邊所成的面圍成的幾何體。AB、CD旋轉(zhuǎn)所成的面就是圓柱的兩個底面,是兩個半徑相同的圓。AD旋轉(zhuǎn)所成的面就是圓柱的側(cè)面,AD不論轉(zhuǎn)動到哪個位置,都是圓柱的母線。

圓錐可以看做將一根直角三角形ACB繞它的一條直角邊(AC)旋轉(zhuǎn)一周,它的其余各邊所成的面圍成的一個幾何體。直角邊BC旋轉(zhuǎn)所成的面就是圓錐的底面,斜邊AB旋轉(zhuǎn)所成的面就是圓錐的側(cè)面,斜邊AB不論轉(zhuǎn)動到哪個位置,都叫做圓錐的母線。


精選圖文

221381
Z范文網(wǎng)、范文協(xié)會網(wǎng)范文檔案館、