中文字幕人妻色偷偷久久_天天鲁一鲁摸一摸爽一爽_最新亚洲人成网站在线观看_999久久久免费精品国产_久久精品丝袜高跟鞋

歡迎訪一網(wǎng)寶!您身邊的知識小幫手,專注做最新的學習參考資料!

最新初三數(shù)學期末復習資料

一網(wǎng)寶 分享 時間: 加入收藏 我要投稿 點贊

學得越多,懂得越多,想得越多,領悟得就越多,就像滴水一樣,一滴水或許很快就會被太陽蒸發(fā),但如果滴水不停的滴,就會變成一個水溝,越來越多,越來越多……下面是小編為大家整理的有關九年級數(shù)學復習資料大全,希望對你們有幫助!

九年級數(shù)學復習資料大全1

1、概念:

把一個圖形繞著某一點O轉動一個角度的圖形變換叫做旋轉,點O叫做旋轉中心,轉動的角叫做旋轉角.

旋轉三要素:旋轉中心、旋轉方面、旋轉角

2、旋轉的性質:

(1)旋轉前后的兩個圖形是全等形;

(2)兩個對應點到旋轉中心的距離相等

(3)兩個對應點與旋轉中心的連線段的夾角等于旋轉角

3、中心對稱:

把一個圖形繞著某一個點旋轉180°,如果它能夠與另一個圖形重合,那么就說這兩個圖形關于這個點對稱或中心對稱,這個點叫做對稱中心.

這兩個圖形中的對應點叫做關于中心的對稱點.

4、中心對稱的性質:

(1)關于中心對稱的兩個圖形,對稱點所連線段都經(jīng)過對稱中心,而且被對稱中心所平分.

(2)關于中心對稱的兩個圖形是全等圖形.

5、中心對稱圖形:

把一個圖形繞著某一個點旋轉180°,如果旋轉后的圖形能夠與原來的圖形重合,那么這個圖形叫做中心對稱圖形,這個點就是它的對稱中心。

九年級數(shù)學復習資料大全2

考點1:確定事件和隨機事件

考核要求:

(1)理解必然事件、不可能事件、隨機事件的概念,知道確定事件與必然事件、不可能事件的關系;

(2)能區(qū)分簡單生活事件中的必然事件、不可能事件、隨機事件。

考點2:事件發(fā)生的可能性大小,事件的概率

考核要求:

(1)知道各種事件發(fā)生的可能性大小不同,能判斷一些隨機事件發(fā)生的可能事件的大小并排出大小順序;

(2)知道概率的含義和表示符號,了解必然事件、不可能事件的概率和隨機事件概率的取值范圍;

(3)理解隨機事件發(fā)生的頻率之間的區(qū)別和聯(lián)系,會根據(jù)大數(shù)次試驗所得頻率估計事件的概率。

注意:

(1)在給可能性的大小排序前可先用“一定發(fā)生”、“很有可能發(fā)生”、“可能發(fā)生”、“不太可能發(fā)生”、“一定不會發(fā)生”等詞語來表述事件發(fā)生的可能性的大小;

(2)事件的概率是確定的常數(shù),而概率是不確定的,可是近似值,與試驗的次數(shù)的多少有關,只有當試驗次數(shù)足夠大時才能更精確。

考點3:等可能試驗中事件的概率問題及概率計算

考核要求

(1)理解等可能試驗的概念,會用等可能試驗中事件概率計算公式來計算簡單事件的概率;

(2)會用枚舉法或畫“樹形圖”方法求等可能事件的概率,會用區(qū)域面積之比解決簡單的概率問題;

(3)形成對概率的初步認識,了解機會與風險、規(guī)則公平性與決策合理性等簡單概率問題。

注意:

(1)計算前要先確定是否為可能事件;

(2)用枚舉法或畫“樹形圖”方法求等可能事件的概率過程中要將所有等可能情況考慮完整。

考點4:數(shù)據(jù)整理與統(tǒng)計圖表

考核要求:

(1)知道數(shù)據(jù)整理分析的意義,知道普查和抽樣調查這兩種收集數(shù)據(jù)的方法及其區(qū)別;

(2)結合有關代數(shù)、幾何的內容,掌握用折線圖、扇形圖、條形圖等整理數(shù)據(jù)的方法,并能通過圖表獲取有關信息。

考點5:統(tǒng)計的含義

考核要求:

(1)知道統(tǒng)計的意義和一般研究過程;

(2)認識個體、總體和樣本的區(qū)別,了解樣本估計總體的思想方法。

考點6:平均數(shù)、加權平均數(shù)的概念和計算

考核要求:

(1)理解平均數(shù)、加權平均數(shù)的概念;

(2)掌握平均數(shù)、加權平均數(shù)的計算公式。注意:在計算平均數(shù)、加權平均數(shù)時要防止數(shù)據(jù)漏抄、重抄、錯抄等錯誤現(xiàn)象,提高運算準確率。

考點7:中位數(shù)、眾數(shù)、方差、標準差的概念和計算

考核要求:

(1)知道中位數(shù)、眾數(shù)、方差、標準差的概念;

(2)會求一組數(shù)據(jù)的中位數(shù)、眾數(shù)、方差、標準差,并能用于解決簡單的統(tǒng)計問題。

注意:

(1)當一組數(shù)據(jù)中出現(xiàn)極值時,中位數(shù)比平均數(shù)更能反映這組數(shù)據(jù)的平均水平;

(2)求中位數(shù)之前必須先將數(shù)據(jù)排序。

考點8:頻數(shù)、頻率的意義,畫頻數(shù)分布直方圖和頻率分布直方圖

考核要求:

(1)理解頻數(shù)、頻率的概念,掌握頻數(shù)、頻率和總量三者之間的關系式;

(2)會畫頻數(shù)分布直方圖和頻率分布直方圖,并能用于解決有關的實際問題。解題時要注意:頻數(shù)、頻率能反映每個對象出現(xiàn)的頻繁程度,但也存在差別:在同一個問題中,頻數(shù)反映的是對象出現(xiàn)頻繁程度的絕對數(shù)據(jù),所有頻數(shù)之和是試驗的總次數(shù);頻率反映的是對象頻繁出現(xiàn)的相對數(shù)據(jù),所有的頻率之和是1。

考點9:中位數(shù)、眾數(shù)、方差、標準差、頻數(shù)、頻率的應用

考核要求:

(1)了解基本統(tǒng)計量(平均數(shù)、眾數(shù)、中位數(shù)、方差、標準差、頻數(shù)、頻率)的意計算及其應用,并掌握其概念和計算方法;

(2)正確理解樣本數(shù)據(jù)的特征和數(shù)據(jù)的代表,能根據(jù)計算結果作出判斷和預測;

(3)能將多個圖表結合起來,綜合處理圖表提供的數(shù)據(jù),會利用各種統(tǒng)計量來進行推理和分析,研究解決有關的實際生活中問題,然后作出合理的解決。

九年級數(shù)學復習資料大全3

一、能正確理解實數(shù)的有關概念

我們已經(jīng)知道整數(shù)和統(tǒng)稱為.并規(guī)定無限不循環(huán)是無理數(shù),這樣我們把有理數(shù)和無理數(shù)統(tǒng)稱為實數(shù),即實數(shù)這個大家庭里有有理數(shù)和無理數(shù)兩大成員.學習時應注意分清有理數(shù)和無理數(shù)是兩類完全不同的數(shù),就是說如果一個數(shù)是有理數(shù),那么它一定不是無理數(shù),反之,如果一個數(shù)是無理數(shù),那么它一定不是有理數(shù).

二、正確理解實數(shù)的分類

實數(shù)的分類可從兩個角度去思考,即(1)按定義來分類;(2)按正、來分類.但要注意0在實數(shù)里也扮演著重要角色.我們通常把正實數(shù)和0合稱為非負數(shù),把負實數(shù)和0合稱為非正數(shù).

三、正確理解實數(shù)與數(shù)軸的關系

實數(shù)與數(shù)軸上的點是一一對應的,就是說所有的實數(shù)都可以用數(shù)軸上的點來表示;反之,數(shù)軸上的每一個點都表示一個實數(shù).數(shù)軸上的任一點表示的數(shù),是有理數(shù),就是無理數(shù).

在數(shù)軸上,表示相反數(shù)的兩個點在原點的兩旁,并且兩點到原點的距離相等.實數(shù)a的絕對值就是在數(shù)軸上這個數(shù)對應的點與原點的距離.

利用數(shù)軸可以比較任意兩個實數(shù)的大小,即在數(shù)軸上表示的兩個實數(shù),絕對值大的反而小.

四、熟練掌握實數(shù)的有關性質

實數(shù)和有理數(shù)一樣也有許多的重要性質.具體地講可從以下幾方面去思考:

1,相反數(shù)實數(shù)a的相反數(shù)是-a,0的相反數(shù)是0,具體地,若a與b互為相反數(shù),則a+b=0;反之,若a+b=0,則a與b互為相反數(shù).

2,絕對值一個正實數(shù)的絕對值是它本身,一個負實數(shù)的絕對值是它的相反數(shù),0的絕對值是0.實數(shù)a的絕對值可表示就是說實數(shù)a的絕對值一定是一個非負數(shù),

3,倒數(shù)乘積為1的兩個實數(shù)互為倒數(shù),即若a與b互為倒數(shù),則ab=1;反之,若ab=1,則a與b互為倒數(shù).這里應特別注意的是0沒有倒數(shù).

4,實數(shù)大小的比較任意兩個實數(shù)都可以比較大小,正實數(shù)都大于0,負實數(shù)都小于0,正實數(shù)大于一切負實數(shù),兩個負實數(shù)絕對值大的反而小.

5,實數(shù)的運算實數(shù)的運算和在有理數(shù)范圍內一樣,值得一提的是,實數(shù)既可以進行加、減、乘、除、乘方運算,又可以進行開方運算,其中正實數(shù)可以開平方.在進行實數(shù)運算時,和有理數(shù)運算一樣,要從高級到低級,即先算乘方、開方,再算乘除,最后算加減,有括號的要先算括號里面的,同級運算要按照從左到右的順序進行.另外,有理數(shù)的運算律在實數(shù)范圍內仍然適用.

九年級數(shù)學復習資料大全4

1、二次根式:形如式子為二次根式;

性質:是一個非負數(shù);

2、二次根式的乘除:

3、二次根式的加減:二次根式加減時,先將二次根式華為最簡二次根式,再將被開方數(shù)相同的二次根式進行合并.

4、海倫-秦九韶公式:,S是的面積,p為.

1:等號兩邊都是整式,且只有一個未知數(shù),未知數(shù)的次是2的方程.

2:配方法將方程的一邊配成完全平方式,然后兩邊開方;

因式分解法:左邊是兩個因式的乘積,右邊為零.

1:一元二次方程在實際問題中的應用

2:韋達定理設是方程的兩個根,那么有

3:一個圖形繞某一點轉動一個角度的圖形變換

性質:對應點到中心的距離相等;

對應點與旋轉中心所連的線段的夾角等于旋轉角

旋轉前后的圖形全等.

2中心對稱:一個圖形繞一個點旋轉180度,和另一個圖形重合,則兩個圖形關于這個點中心對稱;

中心對稱圖形:一個圖形繞某一點旋轉180度后得到的圖形能夠和原來的圖形重合,則說這個圖形是中心對稱圖形;

3關于原點對稱的點的坐標

1圓、圓心、半徑、直徑、圓弧、弦、半圓的定義

2垂直于弦的直徑

圓是圖形,任何一條直徑所在的直線都是它的對稱軸;

垂直于弦的直徑平分弦,并且平方弦所對的兩條弧;

平分弦的直徑垂直弦,并且平分弦所對的兩條弧.

3弧、弦、圓心角

在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦也相等.

4圓周角

在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半;

半圓(或直徑)所對的圓周角是直角,90度的圓周角所對的弦是直徑.

5點和圓的位置關系

點在圓外d>r

點在圓上d=r

點在圓內dR+r

外切d=R+r

相交R-r

九年級數(shù)學復習資料大全5

一、圓的定義

1、以定點為圓心,定長為半徑的點組成的圖形。

2、在同一平面內,到一個定點的距離都相等的點組成的圖形。

二、圓的各元素

1、半徑:圓上一點與圓心的連線段。

2、直徑:連接圓上兩點有經(jīng)過圓心的線段。

3、弦:連接圓上兩點線段(直徑也是弦)。

4、?。簣A上兩點之間的曲線部分。半圓周也是弧。

(1)劣?。盒∮诎雸A周的弧。

(2)優(yōu)?。捍笥诎雸A周的弧。

5、圓心角:以圓心為頂點,半徑為角的邊。

6、圓周角:頂點在圓周上,圓周角的兩邊是弦。

7、弦心距:圓心到弦的垂線段的長。

三、圓的基本性質

1、圓的對稱性

(1)圓是圖形,它的對稱軸是直徑所在的直線。

(2)圓是中心對稱圖形,它的對稱中心是圓心。

(3)圓是對稱圖形。

2、垂徑定理。

(1)垂直于弦的直徑平分這條弦,且平分這條弦所對的兩條弧。

(2)推論:

平分弦(非直徑)的直徑,垂直于弦且平分弦所對的兩條弧。

平分弧的直徑,垂直平分弧所對的弦。

3、圓心角的度數(shù)等于它所對弧的度數(shù)。圓周角的度數(shù)等于它所對弧度數(shù)的一半。

(1)同弧所對的圓周角相等。

(2)直徑所對的圓周角是直角;圓周角為直角,它所對的弦是直徑。

4、在同圓或等圓中,兩條弦、兩條弧、兩個圓周角、兩個圓心角、兩條弦心距五對量中只要有一對量相等,其余四對量也分別相等。

5、夾在平行線間的兩條弧相等。

6、設⊙O的半徑為r,OP=d。

7、(1)過兩點的圓的圓心一定在兩點間連線段的中垂線上。

(2)不在同一直線上的三點確定一個圓,圓心是三邊中垂線的交點,它到三個點的距離相等。

(直角的外心就是斜邊的中點。)

8、直線與圓的位置關系。d表示圓心到直線的距離,r表示圓的半徑。

直線與圓有兩個交點,直線與圓相交;直線與圓只有一個交點,直線與圓相切;

直線與圓沒有交點,直線與圓相離。

9、中,A(x1,y1)、B(x2,y2)。

10、圓的切線判定。

(1)d=r時,直線是圓的切線。

切點不明確:畫垂直,證半徑。

(2)經(jīng)過半徑的外端且與半徑垂直的直線是圓的切線。

切點明確:連半徑,證垂直。

11、圓的切線的性質(補充)。

(1)經(jīng)過切點的直徑一定垂直于切線。

(2)經(jīng)過切點并且垂直于這條切線的直線一定經(jīng)過圓心。

12、切線長定理。

(1)切線長:從圓外一點引圓的兩條切線,切點與這點之間連線段的長叫這個點到圓的切線長。

(2)切線長定理。

∵PA、PB切⊙O于點A、B

∴PA=PB,∠1=∠2。

13、內切圓及有關計算。

(1)內切圓的圓心是三個內角平分線的交點,它到三邊的距離相等。

(2)如圖,△ABC中,AB=5,BC=6,AC=7,⊙O切△ABC三邊于點D、E、F。

求:AD、BE、CF的長。

分析:設AD=x,則AD=AF=x,BD=BE=5-x,CE=CF=7-x.

可得方程:5-x+7-x=6,解得x=3

(3)△ABC中,∠C=90°,AC=b,BC=a,AB=c。

求內切圓的半徑r。

分析:先證得正方形ODCE,

得CD=CE=r

AD=AF=b-r,BE=BF=a-r

b-r+a-r=c

14、(1)弦切角:角的頂點在圓周上,角的一邊是圓的切線,另一邊是圓的弦。

BC切⊙O于點B,AB為弦,∠ABC叫弦切角,∠ABC=∠D。

(2)相交弦定理。

圓的兩條弦AB與CD相交于點P,則PA?PB=PC?PD。

(3)切割線定理。

如圖,PA切⊙O于點A,PBC是⊙O的割線,則PA2=PB?PC。

(4)推論:如圖,PAB、PCD是⊙O的割線,則PA?PB=PC?PD。

15、圓與圓的位置關系。

(1)外離:d>r1+r2,交點有0個;

外切:d=r1+r2,交點有1個;

相交:r1-r2

內切:d=r1-r2,交點有1個;

內含:0≤d

(2)性質。

相交兩圓的連心線垂直平分公共弦。

相切兩圓的連心線必經(jīng)過切點。

16、圓中有關量的計算。

(1)弧長有L表示,圓心角用n表示,圓的半徑用R表示。

(2)扇形的面積用S表示。

(3)圓錐的側面展開圖是扇形。

r為底面圓的半徑,a為母線長。


精選圖文

221381
Z范文網(wǎng)、范文協(xié)會網(wǎng)范文檔案館、