學習方法是通過學習實踐總結出的快速掌握知識的方法。因其與學習掌握知識的效率有關,越來越受到人們的重視。下面是由小編給大家?guī)淼闹袑W數學學習方法3篇,讓我們一起來看看!
中學數學學習方法
1.溫故法
概念教學的起步是在已有的認知結論的基礎上進行的。因此,教學新概念前,如果能對自己認知結構中原有的概念適當作一些結構上的變化,引入新概念,則有利于促進新概念的形成。
2.類比法
抓住新舊知識的本質聯(lián)系,有目的、有計劃地讓自己將有關新舊知識進行類比,就能很快地得出新舊知識在某些屬性上的相同(相似)的結構而引進概念。
3.喻理法
為正確理解某一概念,以實例或生活中的趣事、典故作比喻,引出新概念,謂之喻理導入法。
如,學“用字母表示數”時,先出示的兩句話:“阿Q和小D在看《W的悲劇》?!薄ⅰ拔以贏市S街上遇見一位朋友?!眴枺哼@兩個句子中的字母各表示什么?再出示撲克牌“紅桃
A”,要求自己回答這里的A則表示什么?最后出示等式“0.5×_=3.5”,擦去等號及3.5,變成“0.5×_”后,問兩道式子里的_各表示什么?根據自己的回答,教師結合板書進行小結:字母可以表示人名、地名和數,一個字母可以表示一個數,也可以表示任何數。
這樣,枯燥的概念變得生動、有趣,同學們在由衷的喜悅中進入了“字母表示數”概念的學習。
4.置疑法
通過揭示數學自身的矛盾來引入新概念,以突出引進新概念的必要性和合理性,調動了解新概念的強烈動機和愿望。
5.演示法
有些教學概念,如果把它最本質的屬性用恰當的圖形表示出來,把數與形結合起來,使感性材料的提供更為豐富,則會收到良好效果,易于理解和掌握。
如,學“求一個數的幾倍是多少”的應用題,重要的是建立“倍”的概念。引進這個概念,可出示
2只一行的白蝴蝶圖,再2只、2只地出示3個2只的第二行花蝴蝶圖,結合演示,通過循序答問,使自己清晰地認識到:花蝴蝶與白蝴蝶比較,白蝴蝶1個2只,花蝴蝶是3個2只;把一個2只當作1份,則白蝴蝶的只數相當于1份,花蝴蝶就有3份。用數學上的話說:花蝴蝶與白蝴蝶比,把白蝴蝶當作一倍,花蝴蝶的只數就是白蝴蝶的3倍,這樣,從演示圖形中讓自己看到從“個數”到“份數”,再引出倍數,很快地觸及了概念的本質。
6.問答法
引入概念采用問答式,能在疑、答、辯的過程中,步步探幽,引人入勝。
中學數學學習方法歸納
初二學習內、外部環(huán)境的變化
1、學科上的變化:和初一比較,初二開始添設幾何和物理,這兩個學科都是思維訓練要求較強的學科,直接為進入高一級學科或就業(yè)服務的學科。
2、學科思維訓練的變化:初二各學科在概念的演化、推理的要求、思維的全面性、深刻性、嚴密性、創(chuàng)造性方面都提出了比初一更高的要求。
3、思維發(fā)展內部的變化:您的思維發(fā)展從思維發(fā)展心理學的角度看已進入新的階段,即已經熾烈地、急劇地進入第五個飛躍期的高峰。這個飛躍期是否會縮短,飛躍的質量是否理想要靠兩個條件:
1)教師精心的指導;
2)您自己不懈地努力。
4、外部干擾因素的變化:初二正是您性格定型加快節(jié)奏,幻想重重的年齡期,常常表現出心理狀態(tài)和情緒的不穩(wěn)定,例如逆反情緒發(fā)展。這給外部的誘惑和干擾創(chuàng)造了乘亂而入、乘虛而入的條件。不要因為這些妨礙您正常地接受教師和家長的指導;破壞了您專一學習的正常心理狀態(tài)。要學會冷靜、自抑,把充沛的青春活力投入到學習活動中去。
二、初二學法指導要點
1、積極培養(yǎng)自己對新添學科的學習興趣;平面幾何是邏輯推理、形象思維、抽象思維訓練的體操,平幾學習的好壞,直接影響您的思維發(fā)展,影響您順利地完成第五個思維發(fā)展飛躍。理化學科是您將來從事理工科的基礎,語文的快速閱讀和寫作訓練也在為您今后的發(fā)展奠定基矗。
您在生理上的浙趨成熟,已經為您自我培養(yǎng)廣泛的學習興趣和學科愛好創(chuàng)造了前提條件。但切記勿偏科,初中階段的所有學科都是您和諧完美發(fā)展的第一塊基石。
2、用好讀、聽、議、練、評五字學習法,掌握學習主動權。讀:讀書預習;聽:聽課;議:講議討論;練:復讀練習,形成技能;評:自我評價掌握學習內容的水平。
3、在評價中學習,在評價中達標:在評價中學習是指給自己提出明確的學習目標,在目標的指導和鞭策下學習,以利提高學習效率(增加有效學習時間)。在評價中達標是指只有進入自我評價狀態(tài)的學習,才能有效地達到學習目標,強烈的自我追逐學習目標,才能高質量、高水平的達到目標?;貞浤谶M入考場前的幾分鐘強記強背的情境,效率之高,達標之快,超過平時的十倍、百倍,原因在于您進入了激奮的自我評價狀態(tài)。
4、聽課要訣:
1)在自學預習的基礎上聽;
2)手腦并用,勤于實踐議練,勤于筆記,養(yǎng)成筆記的習慣;
3)勇于發(fā)言,發(fā)問,暴露自己的疑點、弱點;
4)把握重點和難點。對重點要練而不厭,對難點要鍥而不舍;
5)形散神不散。課堂上,教師的讀、講、議、練、評活動安排從形式上可能有些散,您要積極參與配合,做到45分鐘形散神不散;
6)重視每節(jié)課的歸納小結,把感性認識上升為理性認識。就數學而言要學會歸納知識結構、題型、數學思想和方法。
5、重視知識、題型積累,更重視思維訓練和能力發(fā)展。您的成才之日在20__年末或21世紀初,我國科技發(fā)展、經濟騰飛屆時主要靠智能型人才和創(chuàng)造型人才,您要適應21世紀初人才需求的標準,必須是既有知識,又有能力,會思考、會運籌的人,怎樣培養(yǎng)自己的能力呢?
1)在聽懂雙基知識點的同時,著力弄清思路和方法;
2)學會變式地思考問題,就是在研究問題的證與解的同時,著力思考多解和多變,自己編一些變條件,變解答過程,變結論的問題(詳見本書《學會變式的教與學》);
3)有目的地提高自己的動手能力。常言道:動腦不動手,沙地起高樓,新的見解,常出于實踐議練之中;
4)有目的地提高自己的特異思維能力,不要只滿足于教師講的,書上寫的解法和證法。一題多解,勝練十題,特異思維的一次成功,就是思維發(fā)展的一次飛躍。
中學數學高效學習方法
1、配方法。所謂配方,就是把一個解析式利用恒等變形的方法,把其中的某些項配成一個或幾個多項式正整數次冪的和形式。通過配方解決數學問題的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是數學中一種重要的恒等變形的方法,它的應用十分非常廣泛,在因式分解、化簡根式、解方程、證明等式和不等式、求函數的極值和解析式等方面都經常用到它。
2、因式分解法因式分解,就是把一個多項式化成幾個整式乘積的形式。因式分解是恒等變形的基礎,它作為數學的一個有力工具、一種數學方法在代數、幾何、三角等的解題中起著重要的作用。因式分解的方法有許多,除中學課本上介紹的提取公因式法、公式法、分組分解法、十字相乘法等外,還有如利用拆項添項、求根分解、換元、待定系數等等。
3、換元法換元法是初中數學中一個非常重要而且應用十分廣泛的解題方法。我們通常把未知數或變數稱為元,所謂換元法,就是在一個比較復雜的數學式子中,用新的變元去代替原式的一個部分或改造原來的式子,使它簡化,使問題易于解決。
4、判別式法與韋達定理一元二次方程a_2+b_+c=0(a、b、c屬于R,a0)根的判別,△=b2-4ac,不僅用來判定根的性質,而且作為一種解題方法,在代數式變形,解方程(組),解不等式,研究函數乃至幾何、三角運算中都有非常廣泛的應用。韋達定理除了已知一元二次方程的一個根,求另一根;已知兩個數的和與積,求這兩個數等簡單應用外,還可以求根的對稱函數,計論二次方程根的符號,解對稱方程組,以及解一些有關二次曲線的問題等,都有非常廣泛的應用。
5、待定系數法在解數學問題時,若先判斷所求的結果具有某種確定的形式,其中含有某些待定的系數,而后根據題設條件列出關于待定系數的等式,最后解出這些待定系數的值或找到這些待定系數間的某種關系,從而解答數學問題,這種解題方法稱為待定系數法。它是中學數學中常用的方法之一。
6、構造法在解題時,我們常常會采用這樣的方法,通過對條件和結論的分析,構造輔助元素,它可以是一個圖形、一個方程(組)、一個等式、一個函數、一個等價命題等,架起一座連接條件和結論的橋梁,從而使問題得以解決,這種解題的數學方法,我們稱為構造法。運用構造法解題,可以使代數、三角、幾何等各種數學知識互相滲透,有利于問題的解決。
7、反證法反證法是一種間接證法,它是先提出一個與命題的結論相反的假設,然后,從這個假設出發(fā),經過正確的推理,導致矛盾,從而否定相反的假設,達到肯定原命題正確的一種方法。反證法可以分為歸謬反證法(結論的反面只有一種)與窮舉反證法(結論的反面不只一種)。用反證法證明一個命題的步驟,大體上分為:(1)反設;(2)歸謬;(3)結論。反設是反證法的基礎,為了正確地作出反設,掌握一些常用的互為否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一個/一個也沒有;至少有n個/至多有(n一1)個;至多有一個/至少有兩個;唯一/至少有兩個。歸謬是反證法的關鍵,導出矛盾的過程沒有固定的模式,但必須從反設出發(fā),否則推導將成為無源之水,無本之木。推理必須嚴謹。導出的矛盾有如下幾種類型:與已知條件矛盾;與已知的公理、定義、定理、公式矛盾;與反設矛盾;自相矛盾。
8、面積法平面幾何中講的面積公式以及由面積公式推出的與面積計算有關的性質定理,不僅可用于計算面積,而且用它來證明平面幾何題有時會收到事半功倍的效果。運用面積關系來證明或計算平面幾何題的方法,稱為面積方法,它是幾何中的一種常用方法。用歸納法或分析法證明平面幾何題,其困難在添置輔助線。面積法的特點是把已知和未知各量用面積公式聯(lián)系起來,通過運算達到求證的結果。所以用面積法來解幾何題,幾何元素之間關系變成數量之間的關系,只需要計算,有時可以不添置補助線,即使需要添置輔助線,也很容易考慮到。
9、幾何變換法在數學問題的研究中,常常運用變換法,把復雜性問題轉化為簡單性的問題而得到解決。所謂變換是一個集合的任一元素到同一集合的元素的一個一一映射。中學數學中所涉及的變換主要是初等變換。有一些看來很難甚至于無法下手的習題,可以借助幾何變換法,化繁為簡,化難為易。另一方面,也可將變換的觀點滲透到中學數學教學中。將圖形從相等靜止條件下的研究和運動中的研究結合起來,有利于對圖形本質的認識。幾何變換包括:(1)平移;(2)旋轉;(3)對稱。
語文聽課評課技巧
![](/skin/tiku/images/icon_star.png)
![](/skin/tiku/images/icon_star.png)
![](/skin/tiku/images/icon_star.png)
![](/skin/tiku/images/icon_star.png)
![](/skin/tiku/images/icon_star.png)
上一篇:返回列表