數(shù)學思想方法是數(shù)學知識的精髓,是分析、解決數(shù)學問題的基本原則,也是數(shù)學素養(yǎng)的重要內(nèi)涵,它是培養(yǎng)學生良好思維品質(zhì)的催化劑。下面是小編整理的人教版九年級數(shù)學上冊知識點,僅供參考希望能夠幫助到大家。
人教版九年級數(shù)學上冊知識點
二次根式
1、二次根式
式子a(a?0)叫做二次根式,二次根式必須滿足:含有二次根號“
”;被開
方數(shù)a必須是非負數(shù)。
2、最簡二次根式
若二次根式滿足:被開方數(shù)的因數(shù)是整數(shù),因式是整式;被開方數(shù)中不含能開得盡方的因數(shù)或因式,這樣的二次根式叫做最簡二次根式。
化二次根式為最簡二次根式的方法和步驟:
(1)如果被開方數(shù)是分數(shù)(包括小數(shù))或分式,先利用商的算數(shù)平方根的性質(zhì)把它寫成分式的形式,然后利用分母有理化進行化簡。
(2)如果被開方數(shù)是整數(shù)或整式,先將他們分解因數(shù)或因式,然后把能開得盡方的因數(shù)或因式開出來。
3、同類二次根式
幾個二次根式化成最簡二次根式以后,如果被開方數(shù)相同,這幾個二次根式叫做同類二次根式。
4、二次根式的性質(zhì)
(1)(a)2?a(a?0)
a(a?0)
(2)a2?a?a(a?0)
(3)ab?a?b(a?0,b?0)
(4)aba
b
(a?0,b?0)
5、二次根式混合運算
二次根式的混合運算與實數(shù)中的運算順序一樣,先乘方,再乘除,最后加減,有括號的先算括號里的(或先去括號)。
一元二次方程
一、一元二次方程
1、一元二次方程
含有一個未知數(shù),并且未知數(shù)的次數(shù)是2的整式方程叫做一元二次方程。 2、一元二次方程的一般形式
ax2?bx?c?0(a?0),它的特征是:等式左邊十一個關于未知數(shù)x的二次多項式,等式右邊是零,其中ax2叫做二次項,a叫做二次項系數(shù);bx叫做一次項,b叫做一次項系數(shù);c叫做常數(shù)項。
二、一元二次方程的解法
1、直接開平方法
利用平方根的定義直接開平方求一元二次方程的解的方法叫做直接開平方法。直接開平方法適用于解形如(x?a)2?b的一元二次方程。根據(jù)平方根的定義可知,
x?a是b的平方根,當b?0時,x?a??b,x??a?b,當b<0時,方程沒有實數(shù)根。
2、配方法
配方法是一種重要的數(shù)學方法,它不僅在解一元二次方程上有所應用,而且在數(shù)學的其他領域也有著廣泛的應用。配方法的理論根據(jù)是完全平方公式
a2?2ab?b2?(a?b)2,把公式中的a看做未知數(shù)x,并用x代替,則有x2?2bx?b2?(x?b)2。
3、公式法
公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。
一元二次方程ax2?bx?c?0(a?0)的求根公式:
x??b?b2?4ac2a
(b2?4ac?0)
4、因式分解法
因式分解法就是利用因式分解的手段,求出方程的解的方法,這種方法簡單易行,是解一元二次方程最常用的方法。
圓的定義
1、以定點為圓心,定長為半徑的點組成的圖形。
2、在同一平面內(nèi),到一個定點的距離都相等的點組成的圖形。
二、圓的各元素
1、半徑:圓上一點與圓心的連線段。
2、直徑:連接圓上兩點有經(jīng)過圓心的線段。
3、弦:連接圓上兩點線段(直徑也是弦)。
4、?。簣A上兩點之間的曲線部分。半圓周也是弧。
(1)劣?。盒∮诎雸A周的弧。
(2)優(yōu)?。捍笥诎雸A周的弧。
5、圓心角:以圓心為頂點,半徑為角的邊。
6、圓周角:頂點在圓周上,圓周角的兩邊是弦。
7、弦心距:圓心到弦的垂線段的長。
三、圓的基本性質(zhì)
1、圓的對稱性
(1)圓是圖形,它的對稱軸是直徑所在的直線。
(2)圓是中心對稱圖形,它的對稱中心是圓心。
(3)圓是對稱圖形。
2、垂徑定理。
(1)垂直于弦的直徑平分這條弦,且平分這條弦所對的兩條弧。
(2)推論:
平分弦(非直徑)的直徑,垂直于弦且平分弦所對的兩條弧。
平分弧的直徑,垂直平分弧所對的弦。
3、圓心角的度數(shù)等于它所對弧的度數(shù)。圓周角的度數(shù)等于它所對弧度數(shù)的一半。
(1)同弧所對的圓周角相等。
(2)直徑所對的圓周角是直角;圓周角為直角,它所對的弦是直徑。
4、在同圓或等圓中,兩條弦、兩條弧、兩個圓周角、兩個圓心角、兩條弦心距五對量中只要有一對量相等,其余四對量也分別相等。
5、夾在平行線間的兩條弧相等。
6、設⊙O的半徑為r,OP=d。
7、(1)過兩點的圓的圓心一定在兩點間連線段的中垂線上。
(2)不在同一直線上的三點確定一個圓,圓心是三邊中垂線的交點,它到三個點的距離相等。
(直角的外心就是斜邊的中點。)
8、直線與圓的位置關系。d表示圓心到直線的距離,r表示圓的半徑。
直線與圓有兩個交點,直線與圓相交;直線與圓只有一個交點,直線與圓相切;
直線與圓沒有交點,直線與圓相離。
9、中,A(x1,y1)、B(x2,y2)。
10、圓的切線判定。
(1)d=r時,直線是圓的切線。
切點不明確:畫垂直,證半徑。
(2)經(jīng)過半徑的外端且與半徑垂直的直線是圓的切線。
切點明確:連半徑,證垂直。
學數(shù)學要有刨根問底的精神
這里所說的刨根問底不是指不會就直接問,而是不會做先思考,先動筆自己尋找思路,實在想不出來再看書上例題,經(jīng)過一定時間還是不會再去問別人,這樣反復思考過的問題才會印象深刻,下次在遇到相同的或是類似的問題就會迎刃而解了。
很多數(shù)學學的好的人,他們甚至一道題目不會都是冥思苦想好幾天,最后終于想出來結果,甚至有答案都不看,這就是數(shù)學好的人與數(shù)學差的人之間的差異。當然,也不是說問就不好,問要知道問什么這么做,為什么自己不會做,要真正明白自己卡殼在哪里,懂了之后自己再重新做一遍增加記憶。
數(shù)學萬能解題方法
方法1、在解題的過程中,是一個思維的過程。一些基本的、常見的問題,前人已經(jīng)總結出了一些基本的解題思路和常用的解題程序,只要順著這些解題的思路,就可以很容易的找到習題的答案。
方法2、做一道題目時,最重要的就是審題。審題的第一步就是讀題。讀題時要慢,一邊讀、一邊思考,要特別注意每一句話的內(nèi)在含義,并從中找出隱含條件。很多人并沒有養(yǎng)成這種習慣,結果常常會在做題的時候漏掉一些信息,所以在解題的時候要特別注意審題。
方法3、在做了一定數(shù)量的習題后,就會對所涉及到的知識、解題方法有比較清晰的了解。這個時候就需要將這些知識進行歸納總結,以便以后的解題思路更加清晰,達到舉一反三的效果,這樣做數(shù)學題的速度就會大大提升了。