在人類歷史發(fā)展和社會生活中,數(shù)學(xué)發(fā)揮著不可替代的作用,同時也是學(xué)習(xí)和研究現(xiàn)代科學(xué)技術(shù)必不可少的基本工具。下面是小編整理的西師版六年級下冊數(shù)學(xué)知識點,僅供參考希望能夠幫助到大家。
西師版六年級下冊數(shù)學(xué)知識點
1.理解比例的意義和基本性質(zhì),會解比例。
2.理解正比例和反比例的意義,能找出生活中成正比例和成反比例量的實例,能運用比例知識解決簡單的實際問題。
3.認識正比例關(guān)系的圖像,能根據(jù)給出的有正比例關(guān)系的數(shù)據(jù)在有坐標系的方格紙上畫出圖像,會根據(jù)其中一個量在圖像中找出或估計出另一個量的值。
4.了解比例尺,會求平面圖的比例尺以及根據(jù)比例尺求圖上距離或?qū)嶋H距離。
5.認識放大與縮小現(xiàn)象,能利用方格紙等形式按一定的比例將簡單圖形放大或縮小,體會圖形的相似。
6.滲透函數(shù)思想,使學(xué)生受到辯證唯物主義觀點的啟蒙教育。
7.比例的意義:表示兩個比相等的式子叫做比例。如:2:1=6:
8.組成比例的四個數(shù),叫做比例的項。兩端的兩項叫做外項,中間的兩項叫做內(nèi)項。
9.比例的性質(zhì):在比例里,兩個外項的積等于兩個兩個內(nèi)向的積。這叫做比例的基本性質(zhì)。例如:由3:2=6:4可知3×4=2×6;或者由x×1。5=y×1。2可知x:y=1.2:1.5。
10.解比例:根據(jù)比例的基本性質(zhì),如果已知比例中的任何三項,就可以求出這個數(shù)比例中的另外一個未知項。
求比例中的未知項,叫做解比例。
例如:3:x=4:8,內(nèi)項乘內(nèi)項,外項乘外項,則:4x=3×8,解得x=6。
11.正比例和反比例:
(1)成正比例的量:兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應(yīng)的兩個數(shù)的比值(也就是商)一定,這兩種量就叫做成正比例的量,他們的關(guān)系叫做正比例關(guān)系。用字母表示y/x=k(一定)
例如:
①速度一定,路程和時間成正比例;因為:路程÷時間=速度(一定)。
②圓的周長和直徑成正比例,因為:圓的周長÷直徑=圓周率(一定)。
③圓的面積和半徑不成比例,因為:圓的面積÷半徑=圓周率和半徑的積(不一定)。
④y=5x,y和x成正比例,因為:y÷x=5(一定)。
⑤每天看的頁數(shù)一定,總頁數(shù)和天數(shù)成正比例,因為:總頁數(shù)÷天數(shù)=每天看頁數(shù)(一定)。
(2)成反比例的量:兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應(yīng)的兩個數(shù)的積一定,這兩種量就叫做成反比例的量,他們的關(guān)系叫做反比例關(guān)系。
用字母表示x×y=k(一定)
例如:①、路程一定,速度和時間成反比例,因為:速度×?xí)r間=路程(一定)。
②總價一定,單價和數(shù)量成反比例,因為:單價×數(shù)量=總價(一定)。
③長方形面積一定,它的長和寬成反比例,因為:長×寬=長方形的面積(一定)。
④40÷x=y,x和y成反比例,因為:x×y=40(一定)。
⑤煤的總量一定,每天的燒煤量和燒的天數(shù)成反比例,因為:每天燒煤量×天數(shù)=煤的總量(一定)。
12.圖上距離:實際距離=比例尺;
例如:圖上距離2cm,實際距離4km,則比例尺為2cm:4km,最后求得比例尺是1:200000。
13.實際距離=圖上距離÷比例尺;
例如:已知圖上距離2cm和比例尺,則實際距離為:2÷1/200000=400000cm=4km。
14.圖上距離=實際距離×比例尺;
例如:已知實際距離4km和比例尺1:200000,則圖上距離為:400000×1/200000=2(cm)
小學(xué)數(shù)學(xué)求倒數(shù)的方法
①求分數(shù)的倒數(shù):交換分子、分母的位置。
②求整數(shù)的倒數(shù):整數(shù)分之1。
③求帶分數(shù)的倒數(shù):先化成假分數(shù),再求倒數(shù)。
④求小數(shù)的倒數(shù):先化成分數(shù)再求倒數(shù)。
數(shù)學(xué)方程的同解原理
(1)方程的兩邊都加或減同一個數(shù)或同一個等式所得的方程與原方程是同解方程。
(2)方程的兩邊同乘或同除同一個不為0的數(shù)所得的方程與原方程是同解方程。