中文字幕人妻色偷偷久久_天天鲁一鲁摸一摸爽一爽_最新亚洲人成网站在线观看_999久久久免费精品国产_久久精品丝袜高跟鞋

歡迎訪一網(wǎng)寶!您身邊的知識小幫手,專注做最新的學習參考資料!

人教版必修一數(shù)學知識點

一網(wǎng)寶 分享 時間: 加入收藏 我要投稿 點贊

數(shù)學不是教出來的,是悟出來的,是自學出來的。數(shù)學不是看會的,是算會的。學數(shù)學最重要的就是解題能力,同時上課要認真聽講、課后做匹配練習,學會以不變應(yīng)萬變。下面是小編整理的人教版九年級下冊數(shù)學知識點,僅供參考希望能夠幫助到大家。

人教版九年級下冊數(shù)學知識點

二次函數(shù)概述

二次函數(shù)(quadraticfunction)是指未知數(shù)的次數(shù)為二次的多項式函數(shù)。二次函數(shù)可以表示為f(x)=ax^2+bx+c(a不為0)。其圖像是一條主軸平行于y軸的拋物線。

一般地,自變量x和因變量y之間存在如下關(guān)系:

一般式:y=ax^2;+bx+c(a≠0,a、b、c為常數(shù)),則稱y為x的二次函數(shù)。頂點坐標(-b/2a,(4ac-b^2)/4a)

頂點式:y=a(x-h)^2+k或y=a(x+m)^2+k(兩個式子實質(zhì)一樣,但初中課本上都是第一個式子)

交點式(與x軸):y=a(x-x1)(x-x2)

重要概念:(a,b,c為常數(shù),a≠0,且a決定函數(shù)的開口方向,a>0時,開口方向向上,a<0時,開口方向向下。IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大。)

二次函數(shù)表達式的右邊通常為二次三項式。

x是自變量,y是x的二次函數(shù)

x1,x2=[-b±根號下(b^2-4ac)]/2a(即一元二次方程求根公式

求根的方法還有十字相乘法和配方法

開口方向:a>0向上,a<0向下

頂點坐標:(0,0)

對稱軸:Y軸

函數(shù)變化:

(1)當a>0

x>0時,y隨x增大而增大;

x<0時,y隨x增大而減小.

(2)當a<0

x>0時,y隨x增大而減小;

x<0時,y隨x增大而增大.

(小)值:

(1)當a>0,當x=0時,y最小=0.

(2)當a<0,當x=0時,y=0.一般地,自變量x和因變量y之間存在如下關(guān)系:

(1)一般式:y=ax2+bx+c(a,b,c為常數(shù),a≠0),則稱y為x的二次函數(shù)。頂點坐標(-b/2a,(4ac-b^2)/4a)

(2)頂點式:y=a(x-h)2+k或y=a(x+m)^2+k(a,h,k為常數(shù),a≠0).

(3)交點式(與x軸):y=a(x-x1)(x-x2)

(4)兩根式:y=a(x-x1)(x-x2),其中x1,x2是拋物線與x軸的交點的橫坐標,即一元二次方程ax2+bx+c=0的兩個根,a≠0.

說明:

(1)任何一個二次函數(shù)通過配方都可以化為頂點式y(tǒng)=a(x-h)2+k,拋物線的頂點坐標是(h,k),h=0時,拋物線y=ax2+k的頂點在y軸上;當k=0時,拋物線a(x-h)2的頂點在x軸上;當h=0且k=0時,拋物線y=ax2的頂點在原點.

(2)當拋物線y=ax2+bx+c與x軸有交點時,即對應(yīng)二次方程ax2+bx+c=0有實數(shù)根x1和x2存在時,根據(jù)二次三項式的分解公式ax2+bx+c=a(x-x1)(x-x2),二次函數(shù)y=ax2+bx+c可轉(zhuǎn)化為兩根式y(tǒng)=a(x-x1)(x-x2).

二次函數(shù)

二次函數(shù)概述

二次函數(shù)(quadraticfunction)是指未知數(shù)的次數(shù)為二次的多項式函數(shù)。二次函數(shù)可以表示為f(x)=ax^2+bx+c(a不為0)。其圖像是一條主軸平行于y軸的拋物線。

一般地,自變量x和因變量y之間存在如下關(guān)系:

一般式:y=ax^2;+bx+c(a≠0,a、b、c為常數(shù)),則稱y為x的二次函數(shù)。頂點坐標(-b/2a,(4ac-b^2)/4a)

頂點式:y=a(x-h)^2+k或y=a(x+m)^2+k(兩個式子實質(zhì)一樣,但初中課本上都是第一個式子)

交點式(與x軸):y=a(x-x1)(x-x2)

重要概念:(a,b,c為常數(shù),a≠0,且a決定函數(shù)的開口方向,a>0時,開口方向向上,a<0時,開口方向向下。IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大。)

二次函數(shù)表達式的右邊通常為二次三項式。

x是自變量,y是x的二次函數(shù)

x1,x2=[-b±根號下(b^2-4ac)]/2a(即一元二次方程求根公式

求根的方法還有十字相乘法和配方法

開口方向:a>0向上,a<0向下

頂點坐標:(0,0)

對稱軸:Y軸

函數(shù)變化:

(1)當a>0

x>0時,y隨x增大而增大;

x<0時,y隨x增大而減小.

(2)當a<0

x>0時,y隨x增大而減小;

x<0時,y隨x增大而增大.

(小)值:

(1)當a>0,當x=0時,y最小=0.

(2)當a<0,當x=0時,y=0.一般地,自變量x和因變量y之間存在如下關(guān)系:

(1)一般式:y=ax2+bx+c(a,b,c為常數(shù),a≠0),則稱y為x的二次函數(shù)。頂點坐標(-b/2a,(4ac-b^2)/4a)

(2)頂點式:y=a(x-h)2+k或y=a(x+m)^2+k(a,h,k為常數(shù),a≠0).

(3)交點式(與x軸):y=a(x-x1)(x-x2)

(4)兩根式:y=a(x-x1)(x-x2),其中x1,x2是拋物線與x軸的交點的橫坐標,即一元二次方程ax2+bx+c=0的兩個根,a≠0.

說明:

(1)任何一個二次函數(shù)通過配方都可以化為頂點式y(tǒng)=a(x-h)2+k,拋物線的頂點坐標是(h,k),h=0時,拋物線y=ax2+k的頂點在y軸上;當k=0時,拋物線a(x-h)2的頂點在x軸上;當h=0且k=0時,拋物線y=ax2的頂點在原點.

(2)當拋物線y=ax2+bx+c與x軸有交點時,即對應(yīng)二次方程ax2+bx+c=0有實數(shù)根x1和x2存在時,根據(jù)二次三項式的分解公式ax2+bx+c=a(x-x1)(x-x2),二次函數(shù)y=ax2+bx+c可轉(zhuǎn)化為兩根式y(tǒng)=a(x-x1)(x-x2).

相似三角形

1、概念:三條邊對應(yīng)成比例,三個角對應(yīng)相等的兩個三角形叫相似三角形。

2、相似比:在相似三角形中,對應(yīng)邊的比叫作這兩個三角形的相似比。

3、全等三角形:形狀和大小都相同的三角形稱為全等三角形。全等三角形是相似三角形的特例。

例:

1、兩個全等三角形一定相似嗎?為什么?

相似.因為對應(yīng)角相等,對應(yīng)邊成比例

2、兩個直角三角形一定相似嗎?為什么?

兩個直角三角形不一定相似。因為對應(yīng)角不一定相等,對應(yīng)邊也不一定成比例.

3、兩個等腰直角三角形呢?

兩個等腰直角三角形相似.因為對應(yīng)角相等,對應(yīng)邊成比例.

4、兩個等腰三角形一定相似嗎?為什么?

兩個等腰三角形不一定相似.

5、兩個等邊三角形呢?

相似三角形的判定

1.兩個三角形的兩個角對應(yīng)相等

2.兩邊對應(yīng)成比例,且夾角相等

3.三邊對應(yīng)成比例

4.平行于三角形一邊的直線和其他兩邊或兩邊延長線相交,所構(gòu)成的三角形與原三角形相似。

相似三角形的判定方法

根據(jù)相似圖形的特征來判斷。(對應(yīng)邊成比例,對應(yīng)邊的夾角相等)

1.平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構(gòu)成的三角形與原三角形相似;

(這是相似三角形判定的引理,是以下判定方法證明的基礎(chǔ)。這個引理的證明方法需要平行線分線段成比例的證明)

2.如果一個三角形的兩個角與另一個三角形的兩個角對應(yīng)相等,那么這兩個三角形相似;

3.如果兩個三角形的兩組對應(yīng)邊的比相等,并且相應(yīng)的夾角相等,那么這兩個三角形相似;

4.如果兩個三角形的三組對應(yīng)邊的比相等,那么這兩個三角形相似;

5.對應(yīng)角相等,對應(yīng)邊成比例的兩個三角形叫做相似三角形(用定義證明)

絕對相似三角形

1.兩個全等的三角形一定相似。

2.兩個等腰直角三角形一定相似。(兩個等腰三角形,如果頂角或底角相等,那么這兩個等腰三角形相似。)

3.兩個等邊三角形一定相似。

直角三角形相似判定定理

1.斜邊與一條直角邊對應(yīng)成比例的兩直角三角形相似。

2.直角三角形被斜邊上的高分成的兩個直角三角形與原直角三角形相似,并且分成的兩個直角三角形也相似。

射影定理

三角形相似的判定定理推論

推論一:頂角或底角相等的兩個等腰三角形相似。

推論二:腰和底對應(yīng)成比例的兩個等腰三角形相似。

推論三:有一個銳角相等的兩個直角三角形相似。

推論四:直角三角形被斜邊上的高分成的兩個直角三角形和原三角形都相似。

推論五:如果一個三角形的兩邊和其中一邊上的中線與另一個三角形的對應(yīng)部分成比例,那么這兩個三角形相似。

推論六:如果一個三角形的兩邊和第三邊上的中線與另一個三角形的對應(yīng)部分成比例,那么這兩個三角形相似。1.相似三角形的一切對應(yīng)線段(對應(yīng)高、對應(yīng)中線、對應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比。

2.相似三角形周長的比等于相似比。

3.相似三角形面積的比等于相似比的平方

注意:全等是特殊的相似,即相似比為1:1的情況

銳角三角函數(shù)

銳角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),(余割csc)都叫做角A的銳角三角函數(shù)。

正弦等于對邊比斜邊

余弦等于鄰邊比斜邊

正切等于對邊比鄰邊

余切等于鄰邊比對邊

正割等于斜邊比鄰邊

余割等于斜邊比對邊

正切與余切互為倒數(shù)

它的本質(zhì)是任意角的集合與一個比值的集合的變量之間的映射。通常的三角函數(shù)是在平面直角坐標系中定義的,其定義域為整個實數(shù)域。另一種定義是在直角三角形中,但并不完全。現(xiàn)代數(shù)學把它們描述成無窮數(shù)列的極限和微分方程的解,將其定義擴展到復數(shù)系。

由于三角函數(shù)的周期性,它并不具有單值函數(shù)意義上的反函數(shù)。

它有六種基本函數(shù)(初等基本表示):

函數(shù)名正弦余弦正切余切正割余割

在平面直角坐標系xOy中,從點O引出一條射線OP,設(shè)旋轉(zhuǎn)角為θ,設(shè)OP=r,P點的坐標為(x,y)有

正弦函數(shù)sinθ=y/r

余弦函數(shù)cosθ=x/r

正切函數(shù)tanθ=y/x

余切函數(shù)cotθ=x/y

正割函數(shù)secθ=r/x

余割函數(shù)cscθ=r/y

(斜邊為r,對邊為y,鄰邊為x。)

以及兩個不常用,已趨于被淘汰的函數(shù):

正矢函數(shù)versinθ=1-cosθ

余矢函數(shù)coversθ=1-sinθ

3大數(shù)學萬能解題方法

方法1、做題只是學習過程中的一部分,所以不能為了解題而解題。解題時,腦海中的概念越清晰、對公式、定理越熟悉,解題的速度就越快。所以在解題時,應(yīng)該先回歸課本,熟悉基本內(nèi)容,理解其正確的含義,接著再做后面的練習。

方法2、有些題目,尤其是幾何體,一定要學會畫圖。畫圖是一個把抽象思維變成形象思維的過程,會大大降低解題的難度。很多題目,只要分析圖畫出來之后,其中的關(guān)系就會變得一目了然。所以學會畫圖,對于提高解題速度非常重要。

方法3、人對事物的認知總是會有一個從易到難的過程,簡單的問題做多了,概念清晰了,對解題的步驟熟悉了,解題時就會形成跳躍思維,解題的速度也會大大的提高。所以在學習時,要根據(jù)自己的能力,去解那些看似簡單,卻比較重要的習題,來不斷提高解題速度和解題能力。隨著速度和能力的提高,在逐漸的去增加難度,就會事半功倍了。

學好的竅門是什么

文科中的科目大部分都是需要理解記憶的,數(shù)學其實也是如此,只不過是需要理解做題,勤加鍛煉自己的思維能力,面對數(shù)學題的時候,從多方面的去思考,數(shù)學學沒學好其實也體現(xiàn)在每次考試的成績上,有一些同學平時會覺得自己成績不錯,但是到了考試,成績并不是很好,這一部分原因是由于你的基礎(chǔ)知識不扎實,還是一部分原因是由于你在面對考試的時候,心態(tài)差。

精選圖文

221381
Z范文網(wǎng)、范文協(xié)會網(wǎng)范文檔案館、