同學們學數學要記錄老師給的例題,老師是很有經驗的,他們給的例題都是有一定的代表性的,把例題研究透對于數學成績的提高是有很大的助益的。下面是小編為大家整理的有關初一數學上冊重點難點知識匯總,希望對你們有幫助!
初一數學上冊重點難點知識匯總
第一章
1.1 正數與負數
在以前學過的0以外的數前面加上負號“—”的數叫負數(negative number)。
與負數具有相反意義,即以前學過的0以外的數叫做正數(positive number)(根據需要,有時在正數前面也加上“+”)。
1.2 有理數
正整數、0、負整數統(tǒng)稱整數(integer),正分數和負分數統(tǒng)稱分數(fraction)。
整數和分數統(tǒng)稱有理數(rational number)。
通常用一條直線上的點表示數,這條直線叫數軸(number axis)。
數軸三要素:原點、正方向、單位長度。
在直線上任取一個點表示數0,這個點叫做原點(origin)。
只有符號不同的兩個數叫做互為相反數(opposite number)。(例:2的相反數是-2;0的相反數是0)
數軸上表示數a的點與原點的距離叫做數a的絕對值(absolute value),記作|a|。
一個正數的絕對值是它本身;一個負數的絕對值是它的相反數;0的絕對值是0。兩個負數,絕對值大的反而小。
1.3 有理數的加減法
有理數加法法則:
1.同號兩數相加,取相同的符號,并把絕對值相加。
2.絕對值不相等的異號兩數相加,取絕對值較大的加數的符號,并用較大的絕對值減去較小的絕對值?;橄喾磾档膬蓚€數相加得0。
3.一個數同0相加,仍得這個數。
有理數減法法則:減去一個數,等于加這個數的相反數。
1.4 有理數的乘除法
有理數乘法法則:兩數相乘,同號得正,異號得負,并把絕對值相乘。任何數同0相乘,都得0。
乘積是1的兩個數互為倒數。
有理數除法法則:除以一個不等于0的數,等于乘這個數的倒數。
兩數相除,同號得正,異號得負,并把絕對值相除。0除以任何一個不等于0的數,都得0。 mì
求n個相同因數的積的運算,叫乘方,乘方的結果叫冪(power)。在a的n次方中,a叫做底數(base number),n叫做指數(exponent)。
負數的奇次冪是負數,負數的偶次冪是正數。正數的任何次冪都是正數,0的任何次冪都是0。
把一個大于10的數表示成a×10的n次方的形式,使用的就是科學計數法。
從一個數的左邊第一個非0數字起,到末位數字止,所有數字都是這個數的`有效數字(significant digit)。
第二章 一元一次方程
2.1 從算式到方程
方程是含有未知數的等式。
方程都只含有一個未知數(元)x,未知數x的指數都是1(次),這樣的方程叫做一元一次方程(linear equation with one unknown)。
解方程就是求出使方程中等號左右兩邊相等的未知數的值,這個值就是方程的解(solution)。
等式的性質:
1.等式兩邊加(或減)同一個數(或式子),結果仍相等。
2.等式兩邊乘同一個數,或除以同一個不為0的數,結果仍相等。
2.2 從古老的代數書說起——一元一次方程的討論(1)
把等式一邊的某項變號后移到另一邊,叫做移項。
第三章 圖形認識初步
3.1 多姿多彩的圖形
幾何體也簡稱體(solid)。包圍著體的是面(surface)。
3.2 直線、射線、線段
線段公理:兩點的所有連線中,線段做短(兩點之間,線段最短)。
連接兩點間的線段的長度,叫做這兩點的距離。
3.3 角的度量
1度=60分 1分=60秒 1周角=360度 1平角=180度
3.4 角的比較與運算
如果兩個角的和等于90度(直角),就說這兩個叫互為余角(compiementary angle),即其中每一個角是另一個角的余角。
如果兩個角的和等于180度(平角),就說這兩個叫互為補角(supplementary angle),即其中每一個角是另一個角的補角。
等角(同角)的補角相等。
等角(同角)的余角相等。
初一數學上冊有理數知識點匯總
一、目標與要求
1.了解正數與負數是從實際需要中產生的。
2.能正確判斷一個數是正數還是負數,明確0既不是正數也不是負數。
3.理解有理數除法的意義,熟練掌握有理數除法法則,會進行有理數的除法運算;
4.了解倒數概念,會求給定有理數的倒數;
5.通過將除法運算轉化為乘法運算,培養(yǎng)學生的轉化的思想;通過有理數的除法
二、重點
正、負數的概念:
正確理解數軸的概念和用數軸上的點表示有理數;
有理數的加法法則;
除法法則和除法運算。
三、難點
負數的概念、正確區(qū)分兩種不同意義的量;
數軸的概念和用數軸上的點表示有理數;
異號兩數相加的法則;
根據除法是乘法的逆運算,歸納出除法法則及商的符號的確定。
四、知識框架
初一數學上冊知識點:有理數
五、知識點、概念總結
1.正數:比0大的數叫正數。
2.負數:比0小的數叫負數。
3.有理數:
(1)凡能寫成q/p(p,q為整數且p不等于0)形式的數,都是有理數。正整數、0、負整數統(tǒng)稱整數;正分數、負分數統(tǒng)稱分數;整數和分數統(tǒng)稱有理數。
注意:0即不是正數,也不是負數;-a不一定是負數,+a也不一定是正數;p不是有理數;
(2)有理數的分類:
初一數學上冊知識點:有理數
4.數軸:數軸是規(guī)定了原點、正方向、單位長度的一條直線。
5.相反數:
(1)只有符號不同的兩個數,我們說其中一個是另一個的相反數;0的相反數還是0;
(2)相反數的和為0等價于a+b=0等價于a、b互為相反數。
6.絕對值:
(1)正數的絕對值是其本身,0的絕對值是0,負數的絕對值是它的相反數;
注意:絕對值的意義是數軸上表示某數的點離開原點的.距離;
(2)絕對值可表示為:
初一數學上冊知識點:有理數
絕對值的問題經常分類討論;
7.有理數比大?。?/p>
(1)正數的絕對值越大,這個數越大;
(2)正數永遠比0大,負數永遠比0小;
(3)正數大于一切負數;
(4)兩個負數比大小,絕對值大的反而小;
(5)數軸上的兩個數,右邊的數總比左邊的數大;
(6)大數-小數>0,小數-大數<0.
8.互為倒數:乘積為1的兩個數互為倒數;
注意:0沒有倒數;若a≠0,那么a的倒數是1/a;若ab=1等價于a、b互為倒數;若ab=-1等價于a、b互為負倒數。
9. 有理數加法法則:
(1)同號兩數相加,取相同的符號,并把絕對值相加;
(2)異號兩數相加,取絕對值較大的符號,并用較大的絕對值減去較小的絕對值;
(3)一個數與0相加,仍得這個數。
10.有理數加法的運算律:
(1)加法的交換律:a+b=b+a ;
(2)加法的結合律:(a+b)+c=a+(b+c)。
11.有理數減法法則:減去一個數,等于加上這個數的相反數;即a-b=a+(-b)。
12.有理數乘法法則:
(1)兩數相乘,同號為正,異號為負,并把絕對值相乘;
(2)任何數同零相乘都得零;
(3)幾個數相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負因式的個數決定。
13. 有理數乘法的運算律:
(1)乘法的交換律:ab=ba;
(2)乘法的結合律:(ab)c=a(bc);
(3)乘法的分配律:a(b+c)=ab+ac 。
14.有理數除法法則:除以一個數等于乘以這個數的倒數;注意:零不能做除數,即a/0無意義。
15.有理數乘方的法則:
(1)正數的任何次冪都是正數;
(2)負數的奇次冪是負數;負數的偶次冪是正數;注意:當n為正奇數時:(-a)n=-an或(a-b)n=-(b-a)n ,當n為正偶數時:(-a)n =an 或(a-b)n=(b-a)n 。
16.乘方的定義:
(1)求相同因式積的運算,叫做乘方;
(2)乘方中,相同的因式叫做底數,相同因式的個數叫做指數,乘方的結果叫做冪;
17.科學記數法:
把一個大于10的數記成a×10n的形式,其中a是整數數位只有一位的數,這種記數法叫科學記數法。
18.近似數的精確位:一個近似數,四舍五入到那一位,就說這個近似數的精確到那一位。
19.有效數字:從左邊第一個不為零的數字起,到精確的位數止,所有數字,都叫這個近似數的有效數字。
20.混合運算法則:先乘方,后乘除,最后加減。
初一上冊數學重點知識點最全整理
上一篇:初一數學上冊重點難點知識匯總
下一篇:中考數學圓的知識考點