勾股定理,是一個基本的幾何定理,指直角三角形的兩條直角邊的平方和等于斜邊的平方。中國古代稱直角三角形為勾股形。下面是小編整理的八年級下冊數(shù)學(xué)勾股定理知識點,僅供參考希望能夠幫助到大家。
八年級下冊數(shù)學(xué)勾股定理知識點
勾股定理
內(nèi)容:直角三角形兩直角邊的平方和等于斜邊的平方;
表示方法:如果直角三角形的兩直角邊分別為a,b,斜邊為c,那么.
勾股定理的由來:勾股定理也叫商高定理,在西方稱為畢達哥拉斯定理.我國古代把直角三角形中較短的直角邊稱為勾,較長的直角邊稱為股,斜邊稱為弦.早在三千多年前,周朝數(shù)學(xué)家商高就提出了“勾三,股四,弦五”形式的勾股定理,后來人們進一步發(fā)現(xiàn)并證明了直角三角形的三邊關(guān)系為:兩直角邊的平方和等于斜邊的平方。
勾股定理的證明
勾股定理的證明方法很多,常見的是拼圖的方法
用拼圖的方法驗證勾股定理的思路是
①圖形進過割補拼接后,只要沒有重疊,沒有空隙,面積不會改變
②根據(jù)同一種圖形的面積不同的表示方法,列出等式,推導(dǎo)出勾股定理。
勾股定理的適用范圍
勾股定理揭示了直角三角形三條邊之間所存在的數(shù)量關(guān)系,它只適用于直角三角形,對于銳角三角形和鈍角三角形的三邊就不具有這一特征,因而在應(yīng)用勾股定理時,必須明了所考察的對象是直角三角形。
勾股定理的逆定理
如果三角形三邊長a,b,c滿足,那么這個三角形是直角三角形,其中c為斜邊.
①勾股定理的逆定理是判定一個三角形是否是直角三角形的一種重要方法,它通過“數(shù)轉(zhuǎn)化為形”來確定三角形的可能形狀,在運用這一定理時,可用兩小邊的平方和與較長邊的方作比較,若它們相等時,以a,b,c 為三邊的三角形是直角三角形;若,時,以a,b,c 為三邊的三角形是鈍角三角形;若,時,以a,b,c 為三邊的三角形是銳角三角形;
②定理中a,b,c 及只是一種表現(xiàn)形式,不可認為是唯一的,如若三角形三邊長a,b,c 滿足,那么以a,b,c 為三邊的三角形是直角三角形,但是b為斜邊.
③勾股定理的逆定理在用問題描述時,不能說成:當斜邊的平方等于兩條直角邊的平方和時,這個三角形是直角三角形
質(zhì)數(shù)和合數(shù)應(yīng)用
1、質(zhì)數(shù)與密碼學(xué):所謂的公鑰就是將想要傳遞的信息在編碼時加入質(zhì)數(shù),編碼之后傳送給收信人,任何人收到此信息后,若沒有此收信人所擁有的密鑰,則解密的過程中(實為尋找素數(shù)的過程),將會因為找質(zhì)數(shù)的過程(分解質(zhì)因數(shù))過久,使即使取得信息也會無意義。
2、質(zhì)數(shù)與變速箱:在汽車變速箱齒輪的設(shè)計上,相鄰的兩個大小齒輪齒數(shù)設(shè)計成質(zhì)數(shù),以增加兩齒輪內(nèi)兩個相同的齒相遇嚙合次數(shù)的最小公倍數(shù),可增強耐用度減少故障。
數(shù)學(xué)的方法技巧整理
預(yù)習(xí)的方法
上課之前一定要抽時間進行預(yù)習(xí),有時預(yù)習(xí)比做作業(yè)更重要,因為通過預(yù)習(xí)我們可以初步掌握課程的大致內(nèi)容,聽課就能夠把握好重點,針對性比較強,還會帶著問題去聽課,聽課效率就會比較高,上課聽明白了,完成作業(yè)也會更好更快,最終會形成良性循環(huán)。
聽懂課的習(xí)慣
注意聽教師每節(jié)課強調(diào)的學(xué)習(xí)重點,注意聽對定理、公式、法則的引入與推導(dǎo)的方法和過程,注意聽對例題關(guān)鍵部分的提示和處理方法,注意聽對疑難問題的解釋及一節(jié)課最后的小結(jié),這樣,抓住重、難點,沿著知識的發(fā)生發(fā)展的過程來聽課,不僅能提高聽課效率,而且能由“聽會”轉(zhuǎn)變?yōu)椤皶牎薄?/p>
不斷練習(xí)
不斷練習(xí)是指多做數(shù)學(xué)練習(xí)題。希望學(xué)好數(shù)學(xué),多做練習(xí)是必不可少的。做練習(xí)的原因有以下三點:第一,熟練和鞏固學(xué)到的數(shù)學(xué)知識;二,引導(dǎo)同學(xué)靈活運用所學(xué)知識點以及獨立思考獨立做題的水平;第三,融會貫通。通過做題將所學(xué)的所有知識點結(jié)合起來,加深同學(xué)對數(shù)學(xué)體系化的理解。
及時小結(jié),溫故知新
一要進行復(fù)習(xí)小結(jié),及時再現(xiàn)當天或本單元所學(xué)的知識;二要積累資料進行整理??蓪⑵綍r作業(yè)、小測驗中技巧性強的、易錯的題目及時收集成冊——錯題本,便于復(fù)習(xí)時參考。