中文字幕人妻色偷偷久久_天天鲁一鲁摸一摸爽一爽_最新亚洲人成网站在线观看_999久久久免费精品国产_久久精品丝袜高跟鞋

歡迎訪一網(wǎng)寶!您身邊的知識小幫手,專注做最新的學習參考資料!

雨霖鈴詩歌語文教學設計

一網(wǎng)寶 分享 時間: 加入收藏 我要投稿 點贊

《高中數(shù)學》是由人民教育出版社出版的圖書,該書由人民教育出版社、課程教材研究所、數(shù)學課程教材研究開發(fā)中心共同編制,內(nèi)容包括《集合與函數(shù)》《三角函數(shù)》《不等式》《數(shù)列》《復數(shù)》《排列、組合、二項式定理》《立體幾何》《平面解析幾何》等部分,下面是小編為大家整理的2021年高中數(shù)學教學設計模板5篇,希望大家能有所收獲。

2021年高中數(shù)學教學設計模板1

函數(shù)的奇偶性

函數(shù)的奇偶性是函數(shù)的重要性質,是對函數(shù)概念的深化.它把自變量取相反數(shù)時函數(shù)值間的關系定量地聯(lián)系在一起,反映在圖像上為:偶函數(shù)的圖像關于y軸對稱,奇函數(shù)的圖像關于坐標原點成中心對稱.這樣,就從數(shù)、形兩個角度對函數(shù)的奇偶性進行了定量和定性的分析.教材首先通過對具體函數(shù)的圖像及函數(shù)值對應表歸納和抽象,概括出了函數(shù)奇偶性的準確定義.然后,為深化對概念的理解,舉出了奇函數(shù)、偶函數(shù)、既是奇函數(shù)又是偶函數(shù)的函數(shù)和非奇非偶函數(shù)的實例.最后,為加強前后聯(lián)系,從各個角度研究函數(shù)的性質,講清了奇偶性和單調(diào)性的聯(lián)系.這節(jié)課的重點是函數(shù)奇偶性的定義,難點是根據(jù)定義判斷函數(shù)的奇偶性. 教學目標

1. 通過具體函數(shù),讓學生經(jīng)歷奇函數(shù)、偶函數(shù)定義的討論,體驗數(shù)學概念的建立過程,培養(yǎng)其抽象的概括能力.

2. 理解、掌握函數(shù)奇偶性的定義,奇函數(shù)和偶函數(shù)圖像的特征,并能初步應用定義判斷一些簡單函數(shù)的奇偶性.

3. 在經(jīng)歷概念形成的過程中,培養(yǎng)學生歸納、抽象概括能力,體驗數(shù)學既是抽象的又是具體的. 任務分析

這節(jié)內(nèi)容學生在初中雖沒學過,但已經(jīng)學習過具有奇偶性的具體的函數(shù):正比例函數(shù)y=kx,反比例函數(shù) ,(k≠0),二次函數(shù)y=ax,(a≠0),故可在此基礎上,引入奇、偶函數(shù)的概念,以便于學生理解.在引入概念時始終結合具體函數(shù)的圖像,以增加直觀性,這樣更符合學生的認知規(guī)律,同時為闡述奇、偶函數(shù)的幾何特征埋下了伏筆.對于概念可從代數(shù)特征與幾何特征兩個角度去分析,讓學生理解:奇函數(shù)、偶函數(shù)的定義域是關于原點對稱的非空數(shù)集;對于在有定義的奇函數(shù)y=f(x),一定有f(0)=0;既是奇函數(shù),又是偶函數(shù)的函數(shù)有f(x)=0,x∈R.在此基礎上,讓學生了解:奇函數(shù)、偶函數(shù)的矛盾概念———非奇非偶函數(shù).關于單調(diào)性與奇偶性關系,引導學生拓展延伸,可以取得理想效果. 教學設計

一、問題情景

1. 觀察如下兩圖,思考并討論以下問題:

(1)這兩個函數(shù)圖像有什么共同特征?

(2)相應的兩個函數(shù)值對應表是如何體現(xiàn)這些特征的? 可以看到兩個函數(shù)的圖像都關于y軸對稱.從函數(shù)值對應表可以看到,當自變量x取一對相反數(shù)時,相應的兩個函數(shù)值相同.

對于函數(shù)f(x)=x,有f(-3)=9=f(3),f(-2)=4=f(2),f(-1)=1=f(1).事實上,對于R內(nèi)任意的一個x,都有f(-x)=(-x)2=x2=f(x).此時,稱函數(shù)y=x2為偶函數(shù).

2. 觀察函數(shù)f(x)=x和f(x)= 的圖像,并完成下面的兩個函數(shù)值對應表,然后說出這兩個函數(shù)有什么共同特征.

22可以看到兩個函數(shù)的圖像都關于原點對稱.函數(shù)圖像的這個特征,反映在解析式上就是:當自變量x取一對相反數(shù)時,相應的函數(shù)值f(x)也是一對相反數(shù),即對任一x∈R都有f(-x)=-f(x).此時,稱函數(shù)y=f(x)為奇函數(shù).

二、建立模型

由上面的分析討論引導學生建立奇函數(shù)、偶函數(shù)的定義 1. 奇、偶函數(shù)的定義

如果對于函數(shù)f(x)的定義域內(nèi)任意一個x,都有f(-x)=-f(x),那么函數(shù)f(x)就叫作奇函數(shù).如果對于函數(shù)f(x)的定義域內(nèi)任意一個x,都有f(-x)=f(x),那么函數(shù)f(x)就叫作偶函數(shù).

2. 提出問題,組織學生討論

(1)如果定義在R上的函數(shù)f(x)滿足f(-2)=f(2),那么f(x)是偶函數(shù)嗎? (f(x)不一定是偶函數(shù))

(2)奇、偶函數(shù)的圖像有什么特征?

(奇、偶函數(shù)的圖像分別關于原點、y軸對稱) (3)奇、偶函數(shù)的定義域有什么特征? (奇、偶函數(shù)的定義域關于原點對稱)

三、解釋應用 [例 題]

1. 判斷下列函數(shù)的奇偶性.

注:①規(guī)范解題格式;②對于(5)要注意定義域x∈(-1,1].

2. 已知:定義在R上的函數(shù)f(x)是奇函數(shù),當x>0時,f(x)=x(1+x),求f(x)的表達式.

解:(1)任取x<0,則-x>0,∴f(-x)=-x(1-x),

而f(x)是奇函數(shù),∴f(-x)=-f(x).∴f(x)=x(1-x).

(2)當x=0時,f(-0)=-f(0),∴f(0)=-f(0),故f(0)=0.

3. 已知:函數(shù)f(x)是偶函數(shù),且在(-∞,0)上是減函數(shù),判斷f(x)在(0,+∞)上是增函數(shù),還是減函數(shù),并證明你的結論.

解:先結合圖像特征:偶函數(shù)的圖像關于y軸對稱,猜想f(x)在(0,+∞)上是增函數(shù),證明如下:

任取x1>x2>0,則-x1<-x2<0.

∵f(x)在(-∞,0)上是減函數(shù),∴f(-x1)>f(-x2). 又f(x)是偶函數(shù),∴f(x1)>f(x2).

∴f(x)在(0,+∞)上是增函數(shù).

思考:奇函數(shù)或偶函數(shù)在關于原點對稱的兩個區(qū)間上的單調(diào)性有何關系?

[練 習]

1. 已知:函數(shù)f(x)是奇函數(shù),在[a,b]上是增函數(shù)(b>a>0),問f(x)在[-b,-a]上的單調(diào)性如何.

2. f(x)=-x3|x|的大致圖像可能是(

)

3. 函數(shù)f(x)=ax2+bx+c,(a,b,c∈R),當a,b,c滿足什么條件時,(1)函數(shù)f(x)是偶函數(shù).(2)函數(shù)f(x)是奇函數(shù). 4. 設f(x),g(x)分別是R上的奇函數(shù)和偶函數(shù),并且f(x)+g(x)=x(x+1),求f(x),g(x)的解析式.

四、拓展延伸

1. 有既是奇函數(shù),又是偶函數(shù)的函數(shù)嗎?若有,有多少個? 2. 設f(x),g(x)分別是R上的奇函數(shù),偶函數(shù),試研究: (1)F(x)=f(x)·g(x)的奇偶性. (2)G(x)=|f(x)|+g(x)的奇偶性.

3. 已知a∈R,f(x)=a- ,試確定a的值,使f(x)是奇函數(shù).

4. 一個定義在R上的函數(shù),是否都可以表示為一個奇函數(shù)與一個偶函數(shù)的和的形式?

2021年高中數(shù)學教學設計模板2

教學設計示例

加法原理和乘法原理

教學目標

正確理解和掌握加法原理和乘法原理,并能準確地應用它們分析和解決一些簡單的問題,從而發(fā)展學生的思維能力,培養(yǎng)學生分析問題和解決問題的能力. 教學重點和難點

重點:加法原理和乘法原理.

難點:加法原理和乘法原理的準確應用. 教學用具

投影儀. 教學過程設計

(一)引入新課

從本節(jié)課開始,我們將要學習中學代數(shù)內(nèi)容中一個獨特的部分——排列、組合、二項式定理.它們研究對象獨特,研究問題的方法不同一般.雖然份量不多,但是與舊知識的聯(lián)系很少,而且它還是我們今后學習概率論的基礎,統(tǒng)計學、運籌學以及生物的選種等都與它直接有關.至于在日常的工作、生活上,只要涉及安排調(diào)配的問題,就離不開它.

今天我們先學習兩個基本原理.

(二)講授新課

1.介紹兩個基本原理

先考慮下面的問題:

問題1:從甲地到乙地,可以乘火車,也可以乘汽車,還可以乘輪船.一天中,火車有4個班次,汽車有

個班次,輪船有3個班次.那么一天中乘坐這些交通工具從甲地到乙地,共有多少種不同的走法?

因為一天中乘火車有4種走法,乘汽車有2種走法,乘輪船有3種走法,每種走法都可以完成由甲地到乙地這件事情.所以,一天中乘坐這些交通工具從甲地到乙地共有4+2+3=9種不同的走法.

這個問題可以總結為下面的一個基本原理(打出片子——加法原理):

加法原理:做一件事,完成它可以有幾類辦法,在第一類辦法中有m1種不同的方法,在第二類辦法中有m2種不同的方法,……,在第n類辦法中有mn種不同的方法.那么,完成這件事共有N=m1+m2+…+mn種不同的方法.

請大家再來考慮下面的問題(打出片子——問題2):

問題2:由A村去B村的道路有3條,由B村去(見下圖),從A村經(jīng)B村去C村,C村的道路有2條共有多少種不同的走法?

這里,從A村到B村,有3種不同的走法,按這3種走法中的每一種走法到達B村后,再從B村到C村又各有2種不同的走法,因此,從A村經(jīng)B村去C村共有3×2=6種不同的走法.

一般地,有如下基本原理(找出片子——乘法原理):

乘法原理:做一件事,完成它需要分成n個步驟,做第一步有m1種不同的方法,做第二步有m2種不同的方法,……,做第n步有mn種不同的方法.那么,完成這件事共有N=m1×m2×…×mn種不同的方法. 2.淺釋兩個基本原理

兩個基本原理的用途是計算做一件事完成它的所有不同的方法種數(shù).

比較兩個基本原理,想一想,它們有什么區(qū)別?

兩個基本原理的區(qū)別在于:一個與分類有關,一個與分步有關.

看下面的分析是否正確(打出片子——題1,題2):

題1:找1~10這10個數(shù)中的所有合數(shù).第一類辦法是找含因數(shù)2的合數(shù),共有4個;第二類辦法是找含因數(shù)3的合數(shù),共有2個;第三類辦法是找含因數(shù)5的合數(shù),共有1個.

1~10中一共有N=4+2+1=7個合數(shù).

題2:在前面的問題2中,步行從A村到B村的北路需要8時,中路需要4時,南路需要6時,B村到C村的北路需要5時,南路需要3時,要求步行從A村到C村的總時數(shù)不超過12時,共有多少種不同的走法?

第一步從A村到B村有3種走法,第二步從B村到C村有2種走法,共有N=3×2=6種不同走法.

題2中的合數(shù)是4,6,8,9,10這五個,其中6既含有因數(shù)2,也含有因數(shù)3;10既含有因數(shù)2,也含有因數(shù)5.題中的分析是錯誤的.

從A村到C村總時數(shù)不超過12時的走法共有5種.題2中從A村走北路到B村后再到C村,只有南路這一種走法.

(此時給出題1和題2的目的是為了引導學生找出應用兩個基本原理的注意事項,這樣安排,不但可以使學生對兩個基本原理的理解更深刻,而且還可以培養(yǎng)學生的學習能力)

進行分類時,要求各類辦法彼此之間是相互排斥的,不論哪一類辦法中的哪一種方法,都能單獨完成這件事.只有滿足這個條件,才能直接用加法原理,否則不可以.

如果完成一件事需要分成幾個步驟,各步驟都不可缺少,需要依次完成所有步驟才能完成這件事,而各步要求相互獨立,即相對于前一步的每一種方法,下一步都有m種不同的方法,那么計算完成這件事的方法數(shù)時,就可以直接應用乘法原理.

也就是說:類類互斥,步步獨立.

(在學生對問題的分析不是很清楚時,教師及時地歸納小結,能使學生在應用兩個基本原理時,思路進一步清晰和明確,不再簡單地認為什么樣的分類都可以直接用加法,只要分步而不管是否相互聯(lián)系就用乘法.從而深入理解兩個基本原理中分類、分步的真正含義和實質)

(三)應用舉例

現(xiàn)在我們已經(jīng)有了兩個基本原理,我們可以用它們來解決一些簡單問題了.

例1 書架上放有3本不同的數(shù)學書,5本不同的語文書,6本不同的英語書.

(1)若從這些書中任取一本,有多少種不同的取法?

(2)若從這些書中,取數(shù)學書、語文書、英語書各一本,有多少種不同的取法?

(3)若從這些書中取不同的科目的書兩本,有多少種不同的取法?

(讓學生思考,要求依據(jù)兩個基本原理寫出這3個問題的答案及理由,教師巡視指導,并適時口述解法)

(1)從書架上任取一本書,可以有3類辦法:第一類辦法是從3本不同數(shù)學書中任取1本,有3種方法;第二類辦法是從5本不同的語文書中任取1本,有5種方法;第三類辦法是從6本不同的英語書中任取一本,有6種方法.根據(jù)加法原理,得到的取法種數(shù)是

N=m1+m2+m3=3+5+6=14.故從書架上任取一本書的不同取法有14種.

(2)從書架上任取數(shù)學書、語文書、英語書各1本,需要分成三個步驟完成,第一步取1本數(shù)學書,有3種方法;第二步取1本語文書,有5種方法;第三步取1本英語書,有6種方法.根據(jù)乘法原理,得到不同的取法種數(shù)是N=m1×m2×m3=3×5×6=90.故,從書架上取數(shù)學書、語文書、英語書各1本,有90種不同的方法.

(3)從書架上任取不同科目的書兩本,可以有3類辦法:第一類辦法是數(shù)學書、語文書各取1本,需要分兩個步驟,有3×5種方法;第二類辦法是數(shù)學書、英語書各取1本,需要分兩個步驟,有3×6種方法;第三類辦法是語文書、英語書各取1本,有5×6種方法.一共得到不同的取法種數(shù)是N=3×5+3×6+5×6=63.即,從書架任取不同科目的書兩本的不同取法有63種.

例2 由數(shù)字0,1,2,3,4可以組成多少個三位整數(shù)(各位上的數(shù)字允許重復)?

解:要組成一個三位數(shù),需要分成三個步驟:第一步確定百位上的數(shù)字,從1~4這4個數(shù)字中任選一個數(shù)字,有4種選法;第二步確定十位上的數(shù)字,由于數(shù)字允許重復,共有5種選法;第三步確定個位上的數(shù)字,仍有5種選法.根據(jù)乘法原理,得到可以組成的三位整數(shù)的個數(shù)是N=4×5×5=100.

答:可以組成100個三位整數(shù).

教師的連續(xù)發(fā)問、啟發(fā)、引導,幫助學生找到正確的解題思路和計算方法,使學生的分析問題能力有所提高.教師在第二個例題中給出板書示范,能幫助學生進一步加深對兩個基本原理實質的理解,周密的考慮,準確的表達、規(guī)范的書寫,對于學生周密思考、準確表達、規(guī)范書寫良好習慣的形成有著積極的促進作用,也可以為學生后面應用兩個基本原理解排列、組合綜合題打下基礎.

(四)歸納小結

歸納什么時候用加法原理、什么時候用乘法原理:

分類時用加法原理,分步時用乘法原理.

應用兩個基本原理時需要注意分類時要求各類辦法彼此之間相互排斥;分步時要求各步是相互獨立的.

(五)課堂練習

P222:練習1~4.

(對于題4,教師有必要對三個多項式乘積展開后各項的構成給以提示)

(六)布置作業(yè)

P222:練習5,6,7.

補充題:

1.在所有的兩位數(shù)中,個位數(shù)字小于十位數(shù)字的共有多少個?

(提示:按十位上數(shù)字的大小可以分為9類,共有9+8+7+…+2+1=45個個位數(shù)字小于十位數(shù)字的兩位數(shù))

2.某學生填報高考志愿,有m個不同的志愿可供選擇,若只能按第

一、

二、三志愿依次填寫3個不同的志愿,求該生填寫志愿的方式的種數(shù).

(提示:需要按三個志愿分成三步,共有m(m-1)(m-2)種填寫方式)

3.在所有的三位數(shù)中,有且只有兩個數(shù)字相同的三位數(shù)共有多少個?

(提示:可以用下面方法來求解:(1)△△□,(2)△□△,(3)□△□,(1),(2),(3)類中每類都是9×9種,共有9×9+9×9+9×9=3×9×9=243個只有兩個數(shù)字相同的三位數(shù))

4.某小組有10人,每人至少會英語和日語中的一門,其中8人會英語,5人會日語,(1)從中任選一個會外語的人,有多少種選法?(2)從中選出會英語與會日語的各1人,有多少種不同的選法?

(提示:由于8+5=13>10,所以10人中必有3人既會英語又會日語.

(1)N=5+2+3;(2)N=5×2+5×3+2×3)

2021年高中數(shù)學教學設計模板3

一、 教材分析

本小節(jié)選自《普通高中課程標準數(shù)學教科書-數(shù)學必修

(一)》(人教版)第二章基本初等函數(shù)(1)2.2.2對數(shù)函數(shù)及其性質(第一課時),主要內(nèi)容是學習對數(shù)函數(shù)的定義、圖象、性質及初步應用。對數(shù)函數(shù)是繼指數(shù)函數(shù)之后的又一個重要初等函數(shù),無論從知識或思想方法的角度對數(shù)函數(shù)與指數(shù)函數(shù)都有許多類似之處。與指數(shù)函數(shù)相比,對數(shù)函數(shù)所涉及的知識更豐富、方法更靈活,能力要求也更高。學習對數(shù)函數(shù)是對指數(shù)函數(shù)知識和方法的鞏固、深化和提高,也為解決函數(shù)綜合問題及其在實際上的應用奠定良好的基礎。雖然這個內(nèi)容十分熟悉,但新教材做了一定的改動,如何設計能夠符合新課標理念,是人們十分關注的,正因如此,本人選擇這課題立求某些方面有所突破。

二、 學生學習情況分析

剛從初中升入高一的學生,仍保留著初中生許多學習特點,能力發(fā)展正處于形象思維向抽象思維轉折階段,但更注重形象思維。由于函數(shù)概念十分抽象,又以對數(shù)運算為基礎,同時,初中函數(shù)教學要求降低,初中生運算能力有所下降,這雙重問題增加了對數(shù)函數(shù)教學的難度。教師必須認識到這一點,教學中要控制要求 的拔高,關注學習過程。

三、設計理念

本節(jié)課以建構主義基本理論為指導,以新課標基本理念為依據(jù)進行設計的,針對學生的學習背景,對數(shù)函數(shù)的教學首先要挖掘其知識背景貼近學生實際,其次,激發(fā)學生的學習熱情,把學習的主動權交給學生,為他們提供自主探究、合作交流的機會,確實改變學生的學習方式。

四、教學目標

1.通過具體實例,直觀了解對數(shù)函數(shù)模型所刻畫的數(shù)量關系,初步理解對數(shù)函數(shù)的概念,體會對數(shù)函數(shù)是一類重要的函數(shù)模型;

2.能借助計算器或計算機畫出具體對數(shù)函數(shù)的圖象,探索并了解對數(shù)函數(shù)的單調(diào)性與特殊點;

3.通過比較、對照的方法,引導學生結合圖象類比指數(shù)函數(shù),探索研究對數(shù)函數(shù)的性質,培養(yǎng)學生運用函數(shù)的觀點解決實際問題。

五、教學重點與難點

重點是掌握對數(shù)函數(shù)的圖象和性質,難點是底數(shù)對對數(shù)函數(shù)值變化的影響.

六、教學過程設計

教學流程:背景材料→ 引出課題 → 函數(shù)圖象→ 函數(shù)性質 →問題解決→歸納小結

(一)熟悉背景、引入課題 1.讓學生看材料:

材料1(幻燈):馬王堆女尸千年不腐之謎:一九七二年,馬王堆考古發(fā)現(xiàn)震驚世界,專家發(fā)掘西漢辛追遺尸時,形體完整,全身潤澤,皮膚仍有彈性,關節(jié)還可以活動,骨質比現(xiàn)在六十歲的正常人還好,是世界上發(fā)現(xiàn)的首例歷史悠久的濕尸。大家知道,世界發(fā)現(xiàn)的不腐之尸都是在干燥的環(huán)境風干而成,譬如沙漠環(huán)境,這類干尸雖然肌膚未腐,是因為干燥不利細菌繁殖,但關節(jié)和一般人死后一樣,是僵硬的,而馬王堆辛追夫人卻是在濕潤的環(huán)境中保存二千多年,而且關節(jié)可以活動。人們最關注有兩個問題,第一:怎么鑒定尸體的年份?第二:是什么環(huán)境使尸體未腐?其中第一個問題與數(shù)學有關。

圖 4—1 (如圖 4—1在長沙馬王堆“沉睡”近2200年的古長沙國丞相夫人辛追,日前奇跡般地“復

活”了) 那么,考古學家是怎么計算出古長沙國丞相夫人辛追“沉睡”近2200年?上 面已經(jīng)知道考古學家是通過提取尸體的殘留物碳14的殘留量p,利用 t?logp 57302 估算尸體出土的年代,不難發(fā)現(xiàn):對每一個碳14的含量的取值,通過這個對

應關系,

生物死亡年數(shù)t都有唯一的值與之對應,從而t是p的函數(shù);

如圖4—2材料2(幻燈):某種細胞分裂時,由1個分裂成2個,2個分裂成4 個 ??,

如果要求這種細胞經(jīng)過多少次分裂,大約可以得到細胞1萬個,10萬個 ??,

不難發(fā)現(xiàn):分裂次數(shù)y就是要得到的細胞個數(shù)x的函數(shù),即y?log2x;

圖 4—2 1.引導學生觀察這些函數(shù)的特征:含有對數(shù)符號,底數(shù)是常數(shù),真數(shù)是變量,從而得出對數(shù)函數(shù)的定義:函數(shù)y?logax(a?0,且a?1)叫做對數(shù)函數(shù),其中x是自變量,函數(shù)的定義域是(0,+∞).

1 對數(shù)函數(shù)的定義與指數(shù)函數(shù)類似,都是形式定義,注意辨別.如:注意:○ x2 對數(shù)函數(shù)對底數(shù)的限制:(a?0, 都不是對數(shù)函數(shù).○5y?2log2x,y?log5 且a?1).

3.根據(jù)對數(shù)函數(shù)定義填空;

例1 (1)函數(shù) y=logax的定義域是___________ (其中a>0,a≠1) (2) 函數(shù)y=loga(4-x) 的定義域是___________ (其中a>0,a≠1)說明:本例主要考察對數(shù)函數(shù)定義中底數(shù)和定義域的限制,加深對概念的理

解,所以把教材中的解答題改為填空題,節(jié)省時間,點到為止,以避免挖深、拓展、引入復合函數(shù)的概念。

[設計意圖:新課標強調(diào)“考慮到多數(shù)高中生的認知特點,為了有助于他們對函數(shù)概念本質的理解,不妨從學生自己的生活經(jīng)歷和實際問題入手”。因此,新課引入不是按舊教材從反函數(shù)出發(fā),而是選擇從兩個材料引出對數(shù)函數(shù)的概念,讓學生熟悉它的知識背景,初步感受對數(shù)函數(shù)是刻畫現(xiàn)實世界的又一重要數(shù)學模型。這樣處理,對數(shù)函數(shù)顯得不抽象,學生容易接受,降低了新課教學的起點] 2

(二)嘗試畫圖、形成感知 1.確定探究問題

教師:當我們知道對數(shù)函數(shù)的定義之后,緊接著需要探討什么問題? 學生1:對數(shù)函數(shù)的圖象和性質

教師:你能類比前面研究指數(shù)函數(shù)的思路,提出研究對數(shù)函數(shù)圖象和性質的方

法嗎?

學生2:先畫圖象,再根據(jù)圖象得出性質

教師:畫對數(shù)函數(shù)的圖象是否象指數(shù)函數(shù)那樣也需要分類? 學生3:按a?1和0?a?1分類討論

教師:觀察圖象主要看哪幾個特征?

學生4:從圖象的形狀、位置、升降、定點等角度去識圖

教師:在明確了探究方向后,下面,按以下步驟共同探究對數(shù)函數(shù)的圖象: 步驟一:(1)用描點法在同一坐標系中畫出下列對數(shù)函數(shù)的圖象 y?log2xy?log1x 2 (2)用描點法在同一坐標系中畫出下列對數(shù)函數(shù)的圖象 y?log3xy?log1x 3 步驟二:觀察對數(shù)函數(shù)y?log2x、y?log3x與y?log1x、y?log1x的圖象特 23 征 ,看看它們有那些異同點。

步驟三:利用計算器或計算機,選取底數(shù)a(a?0,且a?1)的若干個不同的值,

在同一平面直角坐標系中作出相應對數(shù)函數(shù)的圖象。觀察圖象,它們有哪些共同特征?

步驟四:規(guī)納出能體現(xiàn)對數(shù)函數(shù)的代表性圖象

步驟五:作指數(shù)函數(shù)與對數(shù)函數(shù)圖象的比較 2.學生探究成果

(1)如圖 4—

3、4—4較為熟練地用描點法畫出下列對數(shù)函數(shù) y?log2x、 y?log1x、 y?log3x、y?log1x的圖象 23 圖4—3 圖4—4 (2)如圖4—5學生選取底數(shù)a=1/

4、1/

5、1/

6、1/

10、

4、

5、

6、10,并推

薦幾位代表上臺演示‘幾何畫板’,得到相應對數(shù)函數(shù)的圖象。由于學生自己動手,加上‘幾何畫板’的強大作圖功能,學生非常清楚地看到了底數(shù)a是如何影響函數(shù)y?logax(a?0,且a?1)圖象的變化。

圖4—5 (3)有了這種畫圖感知的過程以及學習指數(shù)函數(shù)的經(jīng)驗,學生很明確y = loga x (a>1)、y = loga x (0

(中部)

10、直線與平面平行的判定

一、教學內(nèi)容分析: 本節(jié)教材選自人教a版數(shù)學必修②第二章第一節(jié)課,本節(jié)內(nèi)容在立幾學習中起著承上啟下的作用,具有重要的意義與地位。本節(jié)課是在前面已學空間點、線、面位置關系的基礎作為學習的出發(fā)點,結合有關的實物模型,通過直觀感知、操作確認(合情推理,不要求證明)歸納出直線與平面平行的判定定理。本節(jié)課的學習對培養(yǎng)學生空間感與邏輯推理能力起到重要作用,特別是對線線平行、面面平行的判定的學習作用重大。

二、學生學習情況分析:

任教的學生在年段屬中上程度,學生學習興趣較高,但學習立幾所具備的語言表達及空間感與空間想象能力相對不足,學習方面有一定困難。

三、設計思想

本節(jié)課的設計遵循從具體到抽象的原則,適當運用多媒體輔助教學手段,借助實物模型,通過直觀感知,操作確認,合情推理,歸納出直線與平面平行的判定定理,將合情推理與演繹推理有機結合,讓學生在觀察分析、自主探索、合作交流的過程中,揭示直線與平面平行的判定、理解數(shù)學的概念,領會數(shù)學的思想方法,養(yǎng)成積極主動、勇于探索、自主學習的學習方式,發(fā)展學生的空間觀念和空間想象力,提高學生的數(shù)學邏輯思維能力。

四、教學目標

通過直觀感知——觀察——操作確認的認識方法理解并掌握直線與平面平行的判定定理,掌握直線與平面平行的畫法并能準確使用數(shù)學符號語言、文字語言表述判定定理。培養(yǎng)學生觀察、探究、發(fā)現(xiàn)的能力和空間想象能力、邏輯思維能力。讓學生在觀察、探究、發(fā)現(xiàn)中學習,在自主合作、交流中學習,體驗學習的樂趣,增強自信心,樹立積極的學習態(tài)度,提高學習的自我效能感。

五、教學重點與難點

重點是判定定理的引入與理解,難點是判定定理的應用及立幾空間感、空間觀念的形成與邏輯思維能力的培養(yǎng)。

六、教學過程設計

(一)知識準備、新課引入

提問1:根據(jù)公共點的情況,空間中直線a和平面?有哪幾種位置關系?并完成 下表:(多媒體幻燈片演示) a?? 提問2:根據(jù)直線與平面平行的定義(沒有公共點)來判定直線與平面平行你認為方便嗎?談談你的看法,并指出是否有別的判定途徑。

[設計意圖:通過提問,學生復習并歸納空間直線與平面位置關系引入本節(jié)課題,并為探尋直線與平面平行判定定理作好準備。]

(二)判定定理的探求過程

1、直觀感知

提問:根據(jù)同學們?nèi)粘I畹挠^察,你們能感知到并舉出直線與平面平行的具體事例嗎?

生1:例舉日光燈與天花板,樹立的電線桿與墻面。

生2:門轉動到離開門框的任何位置時,門的邊緣線始終與門框所在的平面平行(由學生到教室門前作演示),然后教師用多媒體動畫演示。

[學情預設:此處的預設與生成應當是很自然的,但老師要預見到可能出現(xiàn)的情況如電線桿與墻面可能共面的情形及門要離開門框的位置等情形。]

2、動手實踐

教師取出預先準備好的直角梯形泡沫板演示:當把互相平行的一邊放在講臺桌面上并轉動,觀察另一邊與桌面的位置給人以平行的感覺,而當把直角腰放在桌面上并轉動,觀察另一邊與桌面給人的印象就不平行。又如老師直立講臺,則大家會感覺到老師(視為線)與四周墻面平行,如老師向前或后傾斜則感覺老師(視為線)與左、右墻面平行,如老師向左、右傾斜,則感覺老師(視為線)與前、后墻面平行(老師也可用事先準備的木條放在講臺桌上作上述情形的演示)。

[設計意圖:設置這樣動手實踐的情境,是為了讓學生更清楚地看到線面平行與否的關鍵因素是什么,使學生學在情境中,思在情理中,感悟在內(nèi)心中,學自己身邊的數(shù)學,領悟空間觀念與空間圖形性質。]

3、探究思考

(1)上述演示的直線與平面位置關系為何有如此的不同?關鍵是什么因素起了作用呢?通過觀察感知發(fā)現(xiàn)直線與平面平行,關鍵是三個要素:①平面外一條線②

我們把直線與平面相交或平行的位置關系統(tǒng)稱為直線在平面外,用符號表示為 平面內(nèi)一條直線③這兩條直線平行

(2)如果平面外的直線a與平面?內(nèi)的一條直線b平行,那么直線a與平面?平行嗎?

4、歸納確認:(多媒體幻燈片演示)

直線和平面平行的判定定理:平面外的一條直線與平面內(nèi)的一條直線平行,則該直線和這個平面平行。

簡單概括:(內(nèi)外)線線平行?線面平行 a符號表示:ba||? a||b?? 溫馨提示:

作用:判定或證明線面平行。

關鍵:在平面內(nèi)找(或作)出一條直線與面外的直線平行。

思想:空間問題轉化為平面問題

(三)定理運用,問題探究(多媒體幻燈片演示)

1、想一想:

(1)判斷下列命題的真假?說明理由:

①如果一條直線不在平面內(nèi),則這條直線就與平面平行() ②過直線外一點可以作無數(shù)個平面與這條直線平行( ) ③一直線上有二個點到平面的距離相等,則這條直線與平面平行( ) (2)若直線a與平面?內(nèi)無數(shù)條直線平行,則a與?的位置關系是( ) a、a ||? b、a?? c、a ||?或a?? d、a?? [學情預設:設計這組問題目的是強調(diào)定理中三個條件的重要性,同時預設(1)中的③學生可能認為正確的,這樣就無法達到老師的預設與生成的目的,這時教師要引導學生思考,讓學生想象的空間更廣闊些。此外教師可用預先準備好的羊毛針與泡沫板進行演示,讓羊毛針穿過泡沫板以舉不平行的反例,如果有的學生空間想象力強,能按老師的要求生成正確的結果則就由個別學生進行演示。]

2、作一作:

設a、b是二異面直線,則過a、b外一點p且與a、b都平行的平面存在嗎?若存在請畫出平面,不存在說明理由?

先由學生討論交流,教師提問,然后教師總結,并用準備好的羊毛針、鐵線、泡沫板等演示平面的形成過程,最后借多媒體展示作圖的動畫過程。

[設計意圖:這是一道動手操作的問題,不僅是為了拓展加深對定理的認識,更 重要的是培養(yǎng)學生空間感與思維的嚴謹性。]

3、證一證:

例1(見課本60頁例1):已知空間四邊形abcd中,e、f分別是ab、ad的中點,求證:ef || 平面bcd。

變式一:空間四邊形abcd中,e、f、g、h分別是邊ab、bc、cd、da中點,連結ef、fg、gh、he、ac、bd請分別找出圖中滿足線面平行位置關系的所有情況。(共6組線面平行) 變式二:在變式一的圖中如作pq?ef,使p點在線段ae上、q點在線段fc上,連結ph、qg,并繼續(xù)探究圖中所具有的線面平行位置關系?(在變式一的基礎上增加了4組線面平行),并判斷四邊形efgh、pqgh分別是怎樣的四邊形,說明理由。

[設計意圖:設計二個變式訓練,目的是通過問題探究、討論,思辨,及時鞏固定理,運用定理,培養(yǎng)學生的識圖能力與邏輯推理能力。] 例2:如圖,在正方體abcd—a1b1c1d1中,e、f分別是棱bc與c1d1中點,求證:ef || 平面bdd1b1 分析:根據(jù)判定定理必須在平

面bdd1b1內(nèi)找(作)一條線與ef平行,聯(lián)想到中點問題找中點解決的方法,可以取bd或b1d1中點而證之。

思路一:取bd中點g連d1g、eg,可證d1gef為平行四邊形。

思路二:取d1b1中點h連hb、hf,可證hfeb為平行四邊形。

[知識鏈接:根據(jù)空間問題平面化的思想,因此把找空間平行直線問題轉化為找平行四邊形或三角形中位線問題,這樣就自然想到了找中點。平行問題找中點解決是個好途徑好方法。這種思想方法是解決立幾論證平行問題,培養(yǎng)邏輯思維能力的重要思想方法]

4、練一練:

練習1:見課本6頁練習

1、2 練習2:將兩個全等的正方形abcd和abef拼在一起,設m、n分別為ac、bf中點,求證:mn || 平面bce。

變式:若將練習2中m、n改為ac、bf分點且am = fn,試問結論仍成立嗎?試證之。 [設計意圖:設計這組練習,目的是為了鞏固與深化定理的運用,特別是通過練

習2及其變式的訓練,讓學生能在復雜的圖形中去識圖,去尋找分析問題、解決問題的途徑與方法,以達到逐步培養(yǎng)空間感與邏輯思維能力。]

(四)總結

先由學生口頭總結,然后教師歸納總結(由多媒體幻燈片展示):

1、線面平行的判定定理:平面外的一條直線與平面內(nèi)的一條直線平行,則該直線與這個平面平行。

a

2、定理的符號表示:ba||? a||b?? 簡述:(內(nèi)外)線線平行則線面平行

3、定理運用的關鍵是找(作)面內(nèi)的線與面外的線平行,途徑有:取中點利用平行四邊形或三角形中位線性質等。

七、教學反思

本節(jié)“直線與平面平行的判定”是學生學習空間位置關系的判定與性質的第一節(jié)課,也是學生開始學習立幾演澤推理論述的思維方式方法,因此本節(jié)課學習對發(fā)展學生的空間觀念和邏輯思維能力是非常重要的。

本節(jié)課的設計遵循“直觀感知——操作確認——思辯論證”的認識過程,注重引導學生通過觀察、操作交流、討論、有條理的思考和推理等活動,從多角度認識直線和平面平行的判定方法,讓學生通過自主探索、合作交流,進一步認識和掌握空間圖形的性質,積累數(shù)學活動的經(jīng)驗,發(fā)展合情推理、發(fā)展空間觀念與推理能力。

本節(jié)課的設計注重訓練學生準確表達數(shù)學符號語言、文字語言及圖形語言,加強各種語言的互譯。比如上課開始時的復習引入,讓學生用三種語言的表達,動手實踐、定理探求過程以及定理描述也注重三種語言的表達,對例題的講解與分析也注意指導學生三種語言的表達。

本節(jié)課對定理的探求與認識過程的設計始終貫徹直觀在先,感知在先,學

自己身邊的數(shù)學,感知生活中包涵的數(shù)學現(xiàn)象與數(shù)學原理,體驗數(shù)學即生活的道理,比如讓學生舉生活中能感知線面平行的例子,學生會舉出日光燈與天花板,電線桿與墻面,轉動的門等等,同時老師的舉例也很貼進生活,如老師直立時與四周墻面平行,而向前、向后傾斜則只與左右墻面平行,而向左、右傾斜則與前后黑板面平行。然后引導學生從中抽象概括出定理。

2021年高中數(shù)學教學設計模板4

一、教學內(nèi)容分析

本節(jié)內(nèi)容安排在《普通高中課程標準實驗教科書·數(shù)學必修5》(人教a版)

第一章,正弦定理第一課時,是在高二學生學習了三角等知識之后,顯然是對三角知識的應用;同時,作為三角形中的一個定理,也是對初中解直角三角形內(nèi)容的直接延伸,因而定理本身的應用又十分廣泛。 根據(jù)實際教學處理,正弦定理這部分內(nèi)容共分為三個層次:第一層次教師通過引導學生對實際問題的探索,并大膽提出猜想;第二層次由猜想入手,帶著疑問,以及特殊三角形中邊角的關系的驗證,通過“作高法”、“等積法”、“外接圓法”、“ 向量法”等多種方法證明正弦定理,驗證猜想的正確性,并得到三角形面積公式;第三層次利用正弦定理解決引例,最后進行簡單的應用。學生通過對任意三角形中正弦定理的探索、發(fā)現(xiàn)和證明,感受“觀察——實驗——猜想——證明——應用”這一思維方法,養(yǎng)成大膽猜想、善于思考的品質和勇于求真的精神。

二、學情分析

對普高高二的學生來說,已學的平面幾何,解直角三角形,三角函數(shù),向量等知識,有一定觀察分析、解決問題的能力,但對前后知識間的聯(lián)系、理解、應用有一定難度,因此思維靈活性受到制約。根據(jù)以上特點,教師恰當引導,提高學生學習主動性,多加以前后知識間的聯(lián)系,帶領學生直接參與分析問題、解決問題并品嘗勞動成果的喜悅。

三、設計思想:

本節(jié)課采用探究式課堂教學模式,即在教學過程中,在教師的啟發(fā)引導下,以學生獨立自主和合作交流為前提,以問題為導向設計教學情境,以“正弦定理的發(fā)現(xiàn)和證明”為基本探究內(nèi)容,為學生提供充分自由表達、質疑、探究、討論問題的機會,讓學生通過個人、小組、集體等多種解難釋疑的嘗試活動,在知識的形成、發(fā)展過程中展開思維,逐步培養(yǎng)學生發(fā)現(xiàn)問題、探索問題、解決問題的能力和創(chuàng)造性思維的能力。

四、教學目標:

1.讓學生從已有的幾何知識出發(fā), 通過對任意三角形邊角關系的探索,共同探究在任意三角形中,邊與其對角的關系,引導學生通過觀察,實驗,猜想,驗證,證明,由特殊到一般歸納出正弦定理,掌握正弦定理的內(nèi)容及其證明方法,理解三角形面積公式,并學會運用正弦定理解決解斜三角形的兩類基本問題。

2.通過對實際問題的探索,培養(yǎng)學生觀察問題、提出問題、分析問題、解

決問題的能力,增強學生的協(xié)作能力和交流能力,發(fā)展學生的創(chuàng)新意識,培養(yǎng)創(chuàng)造性思維的能力。

3.通過學生自主探索、合作交流,親身體驗數(shù)學規(guī)律的發(fā)現(xiàn),培養(yǎng)學生勇于探索、善于發(fā)現(xiàn)、不畏艱辛的創(chuàng)新品質,增強學習的成功心理,激發(fā)學習數(shù)學的興趣。

4.培養(yǎng)學生合情合理探索數(shù)學規(guī)律的數(shù)學思想方法,通過平面幾何、三角形函數(shù)、正弦定理、向量的數(shù)量積等知識間的聯(lián)系來體現(xiàn)事物之間的普遍聯(lián)系與辯證統(tǒng)一。

五、教學重點與難點

教學重點:正弦定理的發(fā)現(xiàn)與證明;正弦定理的簡單應用。

教學難點:正弦定理的猜想提出過程。

教學準備:制作多媒體課件,學生準備計算器,直尺,量角器。

六、教學過程:

(一)結合實例,激發(fā)動機

師生活動: b 教師:展示情景圖如圖1,船從港口b 航行到港口c,測得bc的距離為600m,

船在港口c卸貨后繼續(xù)向港口a航行,由

于船員的疏忽沒有測得ca距離,如果船

上有測角儀我們能否計算出a、b的距離?

學生:思考提出測量角a,a 教師:若已知測得?bac?75?, ?acb?45?,要計算a、b兩地距離,你

(圖1) 有辦法解決嗎?

學生:思考交流,畫一個三角形a?b?c?,使得b?c?為6cm,?b?a?c??75?, ?a?c?b??45? ,量得a?b?距離約為4.9cm,利用三角形相似性質可知ab約為 490m。

老師:對,很好,在初中,我們學過相似三角形,也學過解直角三角形,大家還記得嗎?

師生:共同回憶解直角三角形,①直角三角形中,已知兩邊,可以求第三邊及兩個角。②直角三角形中,已知一邊和一角,可以求另兩邊及第三個角。 。 教師:引導,?abc是斜三角形,能否利用解直角三角形,精確計算ab呢? 學生:思考,交流,得出過a作ad?bc于d如圖2,把?abc分為兩個直角三角形,解題過程,學生闡述,教師板書。

解:過a作ad?bc于d ad 在rt?acd中,sin?acb? ac ?ad?ac?sin?acb?600?? 2 c d (圖2)

??acb?45?,?bac?75? ??abc?180???acb??acb?60? 在rt?abd中,sin?abc? ?ab?ad abad?? sin?abc教師:表示對學生贊賞,那么剛才解決問題的過程中,若ac?b,ab?c,能否用b、b、c表示c呢?

教師:引導學生再觀察剛才解題過程。 adad學生:發(fā)現(xiàn)sinc?,sinb? bc ?ad?bsinc?csinb bsinc ?c? sinb 教師:引導 ,在剛才的推理過程中,你能想到什么?你能發(fā)現(xiàn)什么? bsincasincbsina學生:發(fā)現(xiàn)即然有c?,那么也有c?,a?。 sinbsinasinb bsincasincbsina教師:引導 c?,c?,a?,我們習慣寫成對稱形式sinbsinasinb cbcaab,,,因此我們可以發(fā)現(xiàn)???sincsinbsincsinasinasinb abc,是否任意三角形都有這種邊角關系呢? ??sianbsisnicn 設計意圖:興趣是最好的老師。如果一節(jié)課有良好的開頭,那就意味著成功的一半。因此,我通過從學生日常生活中的實際問題引入,激發(fā)學生思維,激發(fā)學生的求知欲,引導學生轉化為解直角三角形的問題,在解決問題后,對特殊問題一般化,得出一個猜測性的結論——猜想,培養(yǎng)學生從特殊到一般思想意識,培養(yǎng)學生創(chuàng)造性思維能力。

(二)數(shù)學實驗,驗證猜想

教師:給學生指明一個方向,我們先通過特殊例子檢驗 abc是否成立,舉出特例。 ??sinasinbsinc (1)在△abc中,∠a,∠b,∠c分別為60?,60?,60?,對應的

邊長a:b:c為1:1:1,對應角的正弦值分別為

導學生考察33,,,引222abc,,的關系。(學生回答它們相等) sinasinbsinc (2)、在△abc中,∠a,∠b,∠c分別為45?,45?,90?,對

應的邊長a:b:c為1:1:2,對應角的正弦值分別為22,,1;22 (學生回答它們相等)

(3)、在△abc中,∠a,∠b,∠c分別為30?,60?,90?,對

應的邊長a:b:c為1:3:2,對應角的正弦值分別為

生回答它們相等)(圖3) 31,,1。(學22 bcb (圖3)

教師:對于rt?abc呢?

學生:思考交流得出,如圖4,在rt?abc中,設bc=a,ac=b,ab=c, abca 則有sina?,sinb?,又sinc?1?, ccc abcc 則???c b sinasinbsinc abc從而在直角三角形abc中, ??c sinsinsina b (圖4) abc 教師:那么任意三角形是否有呢?學生按事先安排分??sinasinbsinc 組,出示實驗報告單,讓學生閱讀實驗報告單,質疑提問:有什么不明白的地方或者有什么問題嗎?(如果學生沒有問題,教師讓學生動手計算,附實驗報告單。) 學生:分組互動,每組畫一個三角形,度量出三邊和三個角度數(shù)值,通過實 abc驗數(shù)據(jù)計算,比較、、的近似值。 sinasinbsinc abc 教師:借助多媒體演示隨著三角形任意變換,、、值仍然保sinasinbsinc 持相等。

abc 我們猜想:== sinasinbsinc 設計意圖:讓學生體驗數(shù)學實驗,激起學生的好奇心和求知欲望。學生自己進行實驗,體會到數(shù)學實驗的歸納和演繹推理的兩個側面。

(三)證明猜想,得出定理

師生活動:

教師:我們雖然經(jīng)歷了數(shù)學實驗,多媒體技術支持,對任意的三角形,如何abc用數(shù)學的思想方法證明呢?前面探索過程對我們有沒有啟??sinasinbsinc 發(fā)?學生分組討論,每組派一個代表總結。(以下證明過程,根據(jù)學生回答情況進行敘述)

學生:思考得出

2021年高中數(shù)學教學設計模板5

教學目標

1。使學生掌握的概念,圖象和性質。

(1)能根據(jù)定義判斷形如什么樣的函數(shù)是,了解對底數(shù)的限制條件的合理性,明確的定義域。

(2)能在基本性質的指導下,用列表描點法畫出的圖象,能從數(shù)形兩方面認識的性質。

(3) 能利用的性質比較某些冪形數(shù)的大小,會利用的圖象畫出形如 的圖象。

2。 通過對的概念圖象性質的學習,培養(yǎng)學生觀察,分析歸納的能力,進一步體會數(shù)形結合的思想方法。

3。通過對的研究,讓學生認識到數(shù)學的應用價值,激發(fā)學生學習數(shù)學的興趣。使學生善于從現(xiàn)實生活中數(shù)學的發(fā)現(xiàn)問題,解決問題。

教學建議

教材分析

(1) 是在學生系統(tǒng)學習了函數(shù)概念,基本掌握了函數(shù)的性質的基礎上進行研究的,它是重要的基本初等函數(shù)之一,作為常見函數(shù),它既是函數(shù)概念及性質的第一次應用,也是今后學習對數(shù)函數(shù)的基礎,同時在生活及生產(chǎn)實際中有著廣泛的應用,所以應重點研究。

(2) 本節(jié)的教學重點是在理解定義的基礎上掌握的圖象和性質。難點是對底數(shù) 在 和 時,函數(shù)值變化情況的區(qū)分。

(3)是學生完全陌生的一類函數(shù),對于這樣的函數(shù)應怎樣進行較為系統(tǒng)的理論研究是學生面臨的重要問題,所以從的研究過程中得到相應的結論固然重要,但更為重要的是要了解系統(tǒng)研究一類函數(shù)的方法,所以在教學中要特別讓學生去體會研究的方法,以便能將其遷移到其他函數(shù)的研究。

教法建議

(1)關于的定義按照課本上說法它是一種形式定義即解析式的特征必須是 的樣子,不能有一點差異,諸如 , 等都不是。

(2)對底數(shù) 的限制條件的理解與認識也是認識的重要內(nèi)容。如果有可能盡量讓學生自己去研究對底數(shù),指數(shù)都有什么限制要求,教師再給予補充或用具體例子加以說明,因為對這個條件的認識不僅關系到對的認識及性質的分類討論,還關系到后面學習對數(shù)函數(shù)中底數(shù)的認識,所以一定要真正了解它的由來。

關于圖象的繪制,雖然是用列表描點法,但在具體教學中應避免描點前的盲目列表計算,也應避免盲目的連點成線,要把表列在關鍵之處,要把點連在恰當之處,所以應在列表描點前先把函數(shù)的性質作一些簡單的討論,取得對要畫圖象的存在范圍,大致特征,變化趨勢的大概認識后,以此為指導再列表計算,描點得圖象。

教學設計示例

課題

教學目標

1。 理解的定義,初步掌握的圖象,性質及其簡單應用。

2。 通過的圖象和性質的學習,培養(yǎng)學生觀察,分析,歸納的能力,進一步體會數(shù)形結合的思想方法。

3。 通過對的研究,使學生能把握函數(shù)研究的基本方法,激發(fā)學生的學習興趣。

教學重點和難點

重點是理解的定義,把握圖象和性質。

難點是認識底數(shù)對函數(shù)值影響的認識。

教學用具

投影儀

教學方法

啟發(fā)討論研究式

教學過程

一。 引入新課

我們前面學習了指數(shù)運算,在此基礎上,今天我們要來研究一類新的常見函數(shù)———————。

1。6。(板書)

這類函數(shù)之所以重點介紹的原因就是它是實際生活中的一種需要。比如我們看下面的問題:

問題1:某種細胞_時,由1個_成2個,2個_成4個,……一個這樣的細胞_ 次后,得到的細胞_的個數(shù) 與 之間,構成一個函數(shù)關系,能寫出 與 之間的函數(shù)關系式嗎?

由學生回答: 與 之間的關系式,可以表示為 。

問題2:有一根1米長的繩子,第一次剪去繩長一半,第二次再剪去剩余繩子的一半,……剪了 次后繩子剩余的長度為 米,試寫出 與 之間的函數(shù)關系。

由學生回答: 。

在以上兩個實例中我們可以看到這兩個函數(shù)與我們前面研究的函數(shù)有所區(qū)別,從形式上冪的形式,且自變量 均在指數(shù)的位置上,那么就把形如這樣的函數(shù)稱為。

一。 的概念(板書)

1。定義:形如 的函數(shù)稱為。(板書)

教師在給出定義之后再對定義作幾點說明。

2。幾點說明 (板書)

(1) 關于對 的規(guī)定:

教師首先提出問題:為什么要規(guī)定底數(shù)大于0且不等于1呢?(若學生感到有困難,可將問題分解為若 會有什么問題?如 ,此時 , 等在實數(shù)范圍內(nèi)相應的函數(shù)值不存在。

若 對于 都無意義,若 則 無論 取何值,它總是1,對它沒有研究的必要。為了避免上述各種情況的發(fā)生,所以規(guī)定 且 。

(2)關于的定義域 (板書)

教師引導學生回顧指數(shù)范圍,發(fā)現(xiàn)指數(shù)可以取有理數(shù)。此時教師可指出,其實當指數(shù)為無理數(shù)時, 也是一個確定的實數(shù),對于無理指數(shù)冪,學過的有理指數(shù)冪的性質和運算法則它都適用,所以將指數(shù)范圍擴充為實數(shù)范圍,所以的定義域為 。擴充的另一個原因是因為使她它更具代表更有應用價值。

(3)關于是否是的判斷(板書)

剛才分別認識了中底數(shù),指數(shù)的要求,下面我們從整體的角度來認識一下,根據(jù)定義我們知道什么樣的函數(shù)是,請看下面函數(shù)是否是。

(1) , (2) , (3)

(4) , (5) 。

學生回答并說明理由,教師根據(jù)情況作點評,指出只有(1)和(3)是,其中(3) 可以寫成 ,也是指數(shù)圖象。

最后提醒學生的定義是形式定義,就必須在形式上一摸一樣才行,然后把問題引向深入,有了定義域和初步研究的函數(shù)的性質,此時研究的關鍵在于畫出它的圖象,再細致歸納性質。

3。歸納性質

作圖的用什么方法。用列表描點發(fā)現(xiàn),教師準備明確性質,再由學生回答。

函數(shù)

1。定義域 :

2。值域:

3。奇偶性 :既不是奇函數(shù)也不是偶函數(shù)

4。截距:在 軸上沒有,在 軸上為1。

對于性質1和2可以兩條合在一起說,并追問起什么作用。(確定圖象存在的大致位置)對第3條還應會證明。對于單調(diào)性,我建議找一些特殊點。,先看一看,再下定論。對最后一條也是指導函數(shù)圖象畫圖的依據(jù)。(圖象位于 軸上方,且與 軸不相交。)

在此基礎上,教師可指導學生列表,描點了。取點時還要提醒學生由于不具備對稱性,故 的值應有正有負,且由于單調(diào)性不清,所取點的個數(shù)不能太少。

此處教師可利用計算機列表描點,給出十組數(shù)據(jù),而學生自己列表描點,至少六組數(shù)據(jù)。連點成線時,一定提醒學生圖象的變化趨勢(當 越小,圖象越靠近 軸, 越大,圖象上升的越快),并連出光滑曲線。

二。圖象與性質(板書)

1。圖象的畫法:性質指導下的列表描點法。

2。草圖:

當畫完第一個圖象之后,可問學生是否需要再畫第二個?它是否具有代表性?(教師可提示底數(shù)的條件是且 ,取值可分為兩段)讓學生明白需再畫第二個,不妨取 為例。

此時畫它的圖象的方法應讓學生來選擇,應讓學生意識到列表描點不是的方法,而圖象變換的方法更為簡單。即 = 與 圖象之間關于 軸對稱,而此時 的圖象已經(jīng)有了,具備了變換的條件。讓學生自己做對稱,教師借助計算機畫圖,在同一坐標系下得到 的圖象。

最后問學生是否需要再畫。(可能有兩種可能性,若學生認為無需再畫,則追問其原因并要求其說出性質,若認為還需畫,則教師可利用計算機再畫出如 的圖象一起比較,再找共性)

由于圖象是形的特征,所以先從幾何角度看它們有什么特征。教師可列一個表,如下:

以上內(nèi)容學生說不齊的,教師可適當提出觀察角度讓學生去描述,然后再讓學生將幾何的特征,翻譯為函數(shù)的性質,即從代數(shù)角度的描述,將表中另一部分填滿。

填好后,讓學生仿照此例再列一個 的表,將相應的內(nèi)容填好。為進一步整理性質,教師可提出從另一個角度來分類,整理函數(shù)的性質。

3。性質。

(1)無論 為何值, 都有定義域為 ,值域為 ,都過點 。

(2) 時, 在定義域內(nèi)為增函數(shù), 時, 為減函數(shù)。

(3) 時, , 時, 。

總結之后,特別提醒學生記住函數(shù)的圖象,有了圖,從圖中就可以能讀出性質。

三。簡單應用 (板書)

1。利用單調(diào)性比大小。 (板書)

一類函數(shù)研究完它的概念,圖象和性質后,最重要的是利用它解決一些簡單的問題。首先我們來看下面的問題。

例1。 比較下列各組數(shù)的大小

(1) 與 ; (2) 與 ;

(3) 與1 。(板書)

首先讓學生觀察兩個數(shù)的特點,有什么相同?由學生指出它們底數(shù)相同,指數(shù)不同。再追問根據(jù)這個特點,用什么方法來比較它們的大小呢?讓學生聯(lián)想,提出構造函數(shù)的方法,即把這兩個數(shù)看作某個函數(shù)的函數(shù)值,利用它的單調(diào)性比較大小。然后以第(1)題為例,給出解答過程。

解: 在 上是增函數(shù),且

< 。(板書)

教師最后再強調(diào)過程必須寫清三句話:

(1) 構造函數(shù)并指明函數(shù)的單調(diào)區(qū)間及相應的單調(diào)性。

(2) 自變量的大小比較。

(3) 函數(shù)值的大小比較。

后兩個題的過程略。要求學生仿照第(1)題敘述過程。

例2。比較下列各組數(shù)的大小

(1) 與 ; (2) 與 ;

(3) 與 。(板書)

先讓學生觀察例2中各組數(shù)與例1中的區(qū)別,再思考解決的方法。引導學生發(fā)現(xiàn)對(1)來說 可以寫成 ,這樣就可以轉化成同底的問題,再用例1的方法解決,對(2)來說 可以寫成 ,也可轉化成同底的,而(3)前面的方法就不適用了,考慮新的轉化方法,由學生思考解決。(教師可提示學生的函數(shù)值與1有關,可以用1來起橋梁作用)

最后由學生說出 >1,<1,>。

解決后由教師小結比較大小的方法

(1) 構造函數(shù)的方法: 數(shù)的特征是同底不同指(包括可轉化為同底的)

(2) 搭橋比較法: 用特殊的數(shù)1或0。

三。鞏固練習

練習:比較下列各組數(shù)的大小(板書)

(1) 與 (2) 與 ;

(3) 與 ; (4) 與 。解答過程略

四。小結

1。的概念

2。的圖象和性質

3。簡單應用

五 。板書設計


精選圖文

221381
Z范文網(wǎng)范文協(xié)會網(wǎng)、范文檔案館、