加涅曾在(教學(xué)設(shè)計原理)(1988年)中界定為:“教學(xué)設(shè)計是一個系統(tǒng)化(systematic)規(guī)劃教學(xué)系統(tǒng)的過程。教學(xué)系統(tǒng)本身是對資源和程序作出有利于學(xué)習(xí)的安排。任何組織機(jī)構(gòu),如果其目的旨在開發(fā)人的才能均可以被包括在教學(xué)系統(tǒng)中?!毕旅媸切【帪榇蠹艺淼臉犯呓虒W(xué)初中數(shù)學(xué)教學(xué)設(shè)計5篇,希望大家能有所收獲!
樂高教學(xué)初中數(shù)學(xué)教學(xué)設(shè)計1
《正弦和余弦(二)》
一、素質(zhì)教育目標(biāo)
(一)知識教學(xué)點(diǎn)
使學(xué)生了解一個銳角的正弦(余弦)值與它的余角的余弦(正弦)值之間的關(guān)系.
(二)能力訓(xùn)練點(diǎn)
逐步培養(yǎng)學(xué)生觀察、比較、分析、綜合、抽象、概括的邏輯思維能力.
(三)德育滲透點(diǎn)
培養(yǎng)學(xué)生獨(dú)立思考、勇于創(chuàng)新的精神.
二、教學(xué)重點(diǎn)、難點(diǎn)
1.重點(diǎn):使學(xué)生了解一個銳角的正弦(余弦)值與它的余角的余弦(正弦)值之間的關(guān)系并會應(yīng)用.
2.難點(diǎn):一個銳角的正弦(余弦)與它的余角的余弦(正弦)之間的關(guān)系的應(yīng)用.
三、教學(xué)步驟
(一)明確目標(biāo)
1.復(fù)習(xí)提問
(1)、什么是∠A的正弦、什么是∠A的余弦,結(jié)合圖形請學(xué)生回答.因為正弦、余弦的概念是研究本課內(nèi)容的知識基礎(chǔ),請中下學(xué)生回答,從中可以了解教學(xué)班還有多少人不清楚的,可以采取適當(dāng)?shù)难a(bǔ)救措施.
(2)請同學(xué)們回憶30°、45°、60°角的正、余弦值(教師板書).
(3)請同學(xué)們觀察,從中發(fā)現(xiàn)什么特征?學(xué)生一定會回答“sin30°=cos60°,sin45°=cos45°,sin60°=cos30°,這三個角的正弦值等于它們余角的余弦值”.
2.導(dǎo)入新課
根據(jù)這一特征,學(xué)生們可能會猜想“一個銳角的正弦(余弦)值等于它的余角的余弦(正弦)值.”這是否是真命題呢?引出課題.
(二)、整體感知
關(guān)于銳角的正弦(余弦)值與它的余角的余弦(正弦)值之間的關(guān)系,是通過30°、45°、60°角的正弦、余弦值之間的關(guān)系引入的,然后加以證明.引入這兩個關(guān)系式是為了便于查“正弦和余弦表”,關(guān)系式雖然用黑體字并加以文字語言的證明,但不標(biāo)明是定理,其證明也不要求學(xué)生理解,更不應(yīng)要求學(xué)生利用這兩個關(guān)系式去推證其他三角恒等式.在本章,這兩個關(guān)系式的用處僅僅限于查表和計算,而不是證明.
(三)重點(diǎn)、難點(diǎn)的學(xué)習(xí)和目標(biāo)完成過程
1.通過復(fù)習(xí)特殊角的三角函數(shù)值,引導(dǎo)學(xué)生觀察,并猜想“任一銳角的正弦(余弦)值等于它的余角的余弦(正弦)值嗎?”提出問題,激發(fā)學(xué)生的學(xué)習(xí)熱情,使學(xué)生的思維積極活躍.
2.這時少數(shù)反應(yīng)快的學(xué)生可能頭腦中已經(jīng)“畫”出了圖形,并有了思路,但對部分學(xué)生來說仍思路凌亂.因此教師應(yīng)進(jìn)一步引導(dǎo):sinA=cos(90°-A),cosA=sin(90°-A)(A是銳角)成立嗎?這時,學(xué)生結(jié)合正、余弦的概念,完全可以自己解決,教師要給學(xué)生足夠的研究解決問題的時間,以培養(yǎng)學(xué)生邏輯思維能力及獨(dú)立思考、勇于創(chuàng)新的精神.
3.教師板書:
任意銳角的正弦值等于它的余角的余弦值;任意銳角的余弦值等于它的余角的正弦值.
sinA=cos(90°-A),cosA=sin(90°-A).
4.在學(xué)習(xí)了正、余弦概念的基礎(chǔ)上,學(xué)生了解以上內(nèi)容并不困難,但是,由于學(xué)生初次接觸三角函數(shù),還不熟練,而定理又涉及余角、余函數(shù),使學(xué)生極易混淆.因此,定理的應(yīng)用對學(xué)生來說是難點(diǎn)、在給出定理后,需加以鞏固.
已知∠A和∠B都是銳角,
(1)把cos(90°-A)寫成∠A的正弦.
(2)把sin(90°-A)寫成∠A的余弦.
這一練習(xí)只能起到鞏固定理的作用.為了運(yùn)用定理,教材安排了例3.
(2)已知sin35°=0.5736,求cos55°;
(3)已知cos47°6′=0.6807,求sin42°54′.
(1)問比較簡單,對照定理,學(xué)生立即可以回答.(2)、(3)比(1)則更深一步,因為(1)明確指出∠B與∠A互余,(2)、(3)讓學(xué)生自己發(fā)現(xiàn)35°與55°的角,47°6′分42°54′的角互余,從而根據(jù)定理得出答案,因此(2)、(3)問在課堂上應(yīng)該請基礎(chǔ)好一些的同學(xué)講清思維過程,便于全體學(xué)生掌握,在三個問題處理完之后,將題目變形:
(2)已知sin35°=0.5736,則cos______=0.5736.
(3)cos47°6′=0.6807,則sin______=0.6807,以培養(yǎng)學(xué)生思維能力.
為了配合例3的教學(xué),教材中配備了練習(xí)題2.
(2)已知sin67°18′=0.9225,求cos22°42′;
(3)已知cos4°24′=0.9971,求sin85°36′.
學(xué)生獨(dú)立完成練習(xí)2,就說明定理的教學(xué)較成功,學(xué)生基本會運(yùn)用.
教材中3的設(shè)置,實(shí)際上是對前二節(jié)課內(nèi)容的綜合運(yùn)用,既考察學(xué)生正、余弦概念的掌握程度,同時又對本課知識加以鞏固練習(xí),因此例3的安排恰到好處.同時,做例3也為下一節(jié)查正余弦表做了準(zhǔn)備.
(四)小結(jié)與擴(kuò)展
1.請學(xué)生做知識小結(jié),使學(xué)生對所學(xué)內(nèi)容進(jìn)行歸納總結(jié),將所學(xué)內(nèi)容變成自己知識的組成部分.
2.本節(jié)課我們由特殊角的正弦(余弦)和它的余角的余弦(正弦)值間關(guān)系,以及正弦、余弦的概念得出的結(jié)論:任意一個銳角的正弦值等于它的余角的余弦值,任意一個銳角的余弦值等于它的余角的正弦值.
四、布置作業(yè)
樂高教學(xué)初中數(shù)學(xué)教學(xué)設(shè)計2
正弦和余弦
一、素質(zhì)教育目標(biāo)
(一)知識教學(xué)點(diǎn)
使學(xué)生知道當(dāng)直角三角形的銳角固定時,它的對邊、鄰邊與斜邊的比值也都固定這一事實(shí).
(二)能力訓(xùn)練點(diǎn)
逐步培養(yǎng)學(xué)生會觀察、比較、分析、概括等邏輯思維能力.
(三)德育滲透點(diǎn)
引導(dǎo)學(xué)生探索、發(fā)現(xiàn),以培養(yǎng)學(xué)生獨(dú)立思考、勇于創(chuàng)新的精神和良好的學(xué)習(xí)習(xí)慣.
二、教學(xué)重點(diǎn)、難點(diǎn)
1.重點(diǎn):使學(xué)生知道當(dāng)銳角固定時,它的對邊、鄰邊與斜邊的比值也是固定的這一事實(shí).
2.難點(diǎn):學(xué)生很難想到對任意銳角,它的對邊、鄰邊與斜邊的比值也是固定的事實(shí),關(guān)鍵在于教師引導(dǎo)學(xué)生比較、分析,得出結(jié)論.
三、教學(xué)步驟
(一)明確目標(biāo)
1.如圖6-1,長5米的梯子架在高為3米的墻上,則A、B間距離為多少米?
2.長5米的梯子以傾斜角∠CAB為30°靠在墻上,則A、B間的距離為多少?
3.若長5米的梯子以傾斜角40°架在墻上,則A、B間距離為多少?
4.若長5米的梯子靠在墻上,使A、B間距為2米,則傾斜角∠CAB為多少度?
前兩個問題學(xué)生很容易回答.這兩個問題的設(shè)計主要是引起學(xué)生的回憶,并使學(xué)生意識到,本章要用到這些知識.但后兩個問題的設(shè)計卻使學(xué)生感到疑惑,這對初三年級這些好奇、好勝的學(xué)生來說,起到激起學(xué)生的學(xué)習(xí)興趣的作用.同時使學(xué)生對本章所要學(xué)習(xí)的內(nèi)容的特點(diǎn)有一個初步的了解,有些問題單靠勾股定理或含30°角的直角三角形和等腰直角三角形的知識是不能解決的,解決這類問題,關(guān)鍵在于找到一種新方法,求出一條邊或一個未知銳角,只要做到這一點(diǎn),有關(guān)直角三角形的其他未知邊角就可用學(xué)過的知識全部求出來.
通過四個例子引出課題.
(二)整體感知
1.請每一位同學(xué)拿出自己的三角板,分別測量并計算30°、45°、60°角的對邊、鄰邊與斜邊的比值.
學(xué)生很快便會回答結(jié)果:無論三角尺大小如何,其比值是一個固定的值.程度較好的學(xué)生還會想到,以后在這些特殊直角三角形中,只要知道其中一邊長,就可求出其他未知邊的長.
2.請同學(xué)畫一個含40°角的直角三角形,并測量、計算40°角的對邊、鄰邊與斜邊的比值,學(xué)生又高興地發(fā)現(xiàn),不論三角形大小如何,所求的比值是固定的.大部分學(xué)生可能會想到,當(dāng)銳角取其他固定值時,其對邊、鄰邊與斜邊的比值也是固定的嗎?
這樣做,在培養(yǎng)學(xué)生動手能力的同時,也使學(xué)生對本節(jié)課要研究的知識有了整體感知,喚起學(xué)生的求知欲,大膽地探索新知.
(三)重點(diǎn)、難點(diǎn)的學(xué)習(xí)與目標(biāo)完成過程
1.通過動手實(shí)驗,學(xué)生會猜想到“無論直角三角形的銳角為何值,它的對邊、鄰邊與斜邊的比值總是固定不變的”.但是怎樣證明這個命題呢?學(xué)生這時的思維很活躍.對于這個問題,部分學(xué)生可能能解決它.因此教師此時應(yīng)讓學(xué)生展開討論,獨(dú)立完成.
2.學(xué)生經(jīng)過研究,也許能解決這個問題.若不能解決,教師可適當(dāng)引導(dǎo):
若一組直角三角形有一個銳角相等,可以把其
頂點(diǎn)A1,A2,A3重合在一起,記作A,并使直角邊AC1,AC2,AC3……落在同一條直線上,則斜邊AB1,AB2,AB3……落在另一條直線上.這樣同學(xué)們能解決這個問題嗎?引導(dǎo)學(xué)生獨(dú)立證明:易知,B1C1∥B2C2∥B3C3……,∴△AB1C1∽△AB2C2∽△AB3C3∽……,∴
形中,∠A的對邊、鄰邊與斜邊的比值,是一個固定值.
通過引導(dǎo),使學(xué)生自己獨(dú)立掌握了重點(diǎn),達(dá)到知識教學(xué)目標(biāo),同時培養(yǎng)學(xué)生能力,進(jìn)行了德育滲透.
而前面導(dǎo)課中動手實(shí)驗的設(shè)計,實(shí)際上為突破難點(diǎn)而設(shè)計.這一設(shè)計同時起到培養(yǎng)學(xué)生思維能力的作用.
練習(xí)題為 作了孕伏同時使學(xué)生知道任意銳角的對邊與斜邊的比值都能求出來.
(四)總結(jié)與擴(kuò)展
1.引導(dǎo)學(xué)生作知識總結(jié):本節(jié)課在復(fù)習(xí)勾股定理及含30°角直角三角形的性質(zhì)基礎(chǔ)上,通過動手實(shí)驗、證明,我們發(fā)現(xiàn),只要直角三角形的銳角固定,它的對邊、鄰邊與斜邊的比值也是固定的.
教師可適當(dāng)補(bǔ)充:本節(jié)課經(jīng)過同學(xué)們自己動手實(shí)驗,大膽猜測和積極思考,我們發(fā)現(xiàn)了一個新的結(jié)論,相信大家的邏輯思維能力又有所提高,希望大家發(fā)揚(yáng)這種創(chuàng)新精神,變被動學(xué)知識為主動發(fā)現(xiàn)問題,培養(yǎng)自己的創(chuàng)新意識.
2.擴(kuò)展:當(dāng)銳角為30°時,它的對邊與斜邊比值我們知道.今天我們又發(fā)現(xiàn),銳角任意時,它的對邊與斜邊的比值也是固定的.如果知道這個比值,已知一邊求其他未知邊的問題就迎刃而解了.看來這個比值很重要,下節(jié)課我們就著重研究這個“比值”,有興趣的同學(xué)可以提前預(yù)習(xí)一下.通過這種擴(kuò)展,不僅對正、余弦概念有了初步印象,同時又激發(fā)了學(xué)生的興趣.
四、布置作業(yè)
本節(jié)課內(nèi)容較少,而且是為正、余弦概念打基礎(chǔ)的,因此課后應(yīng)要求學(xué)生預(yù)習(xí)正余弦概念.
五、板書設(shè)計
樂高教學(xué)初中數(shù)學(xué)教學(xué)設(shè)計3
《角平分線的性質(zhì)》
(一)創(chuàng)設(shè)情境 導(dǎo)入新課
不利用工具,請你將一張用紙片做的角分成兩個相等的角。你有什么辦法?
如果前面活動中的紙片換成木板、鋼板等沒法折的角,又該怎么辦呢?
設(shè)計目的:能聚攏學(xué)生的思維為新課的開展創(chuàng)造了良好的教學(xué)氛圍。
(二)合作交流 探究新知
(活動一)探究角平分儀的原理。具體過程如下:
播放奧巴馬訪問我國的錄像資料------引出雨傘-----觀察它的截面圖,使學(xué)生認(rèn)清其 中的邊角關(guān)系-----引出角平分線;并且運(yùn)用幾何畫板對傘的開合進(jìn)行動態(tài)演示,讓學(xué)生直觀感受傘面形成的角與主桿的關(guān)系-----讓學(xué)生設(shè)計制作角平分儀;并利用以前所學(xué)的知識尋找理論上的依據(jù),說明這個儀器的制作原理。
設(shè)計目的:用生活中的實(shí)例感知。以最近大事作引入點(diǎn),以最常見的事物為載體,讓學(xué)生感受到生活中處處都有數(shù)學(xué),認(rèn)識到數(shù)學(xué)的價值。其中設(shè)計制作角平分儀,可培養(yǎng)學(xué)生的創(chuàng)造力和成就感以及學(xué)習(xí)數(shù)學(xué)的興趣。使學(xué)生很輕松的完成活動二。
(活動二)通過上述探究,能否總結(jié)出尺規(guī)作已知角的平分線的一般方法.自己動手做做看.然后與同伴交流操作心得.
分小組完成這項活動,教師可參與到學(xué)生活動中,及時發(fā)現(xiàn)問題,給予啟發(fā)和指導(dǎo),使講評更具有針對性。
討論結(jié)果展示: 教師根據(jù)學(xué)生的敘述,利用多媒體課件演示作已知角的平分線的方法:
已知:∠AO B.
求作:∠AOB的平分線.
作法:
(1)以O(shè)為圓心,適當(dāng)長為半徑作弧,分別交OA、OB于M、N.
(2)分別以M、N為圓心,大于1/2MN的長為半徑作弧.兩弧在∠AOB內(nèi)部交于點(diǎn)C.
(3)作射線OC,射線OC即為所求.
設(shè)計目的:使學(xué)生能更直觀地理解畫法,提高學(xué)習(xí)數(shù)學(xué)的興趣。
議一議:
1.在上面作法的第二步中,去掉“大于 MN的長”這個條件行嗎?
2.第二步中所作的兩弧交點(diǎn)一定在∠AOB的內(nèi)部嗎?
設(shè)計這兩個問題的目的在于加深對角的平分線的作法的理解,培養(yǎng)數(shù)學(xué)嚴(yán)密性的良好學(xué)習(xí)習(xí)慣。
學(xué)生討論結(jié)果總結(jié):
1.去掉“大于 MN的長”這個條件,所作的兩弧可能沒有交點(diǎn),所以就找不到角的平分線.
2.若分別以M、N為圓心,大于 MN的長為半徑畫兩弧,兩弧的交點(diǎn)可能在∠AOB的內(nèi)部,也可能在∠AOB的外部,而我們要找的是∠AOB內(nèi)部的交點(diǎn),否則兩弧交點(diǎn)與頂點(diǎn)連線得到的射線就不是∠AOB的平分線了.
3.角的平分線是一條射線.它不是線段,也不是直線,所以第二步中的兩個限制缺一不可.
4.這種作法的可行性可以通過全等三角形來證明.
(活動三)探究角平分線的性質(zhì)
思考:已知一角及其角平分線添加輔助線構(gòu)成全等三角形;構(gòu)成全等的直角三角形。這樣的三角形有多少對?
這樣設(shè)計的目的是加深對全等的認(rèn)識。
樂高教學(xué)初中數(shù)學(xué)教學(xué)設(shè)計4
有理數(shù)的加法(一)
教學(xué)目標(biāo): 1、使學(xué)生在現(xiàn)實(shí)情境中理解有理數(shù)加法的意義
2、經(jīng)歷探索有理數(shù)加法法則的過程,掌握有理數(shù)加法法則,并能準(zhǔn)確地進(jìn)行加法運(yùn)算。[]
3、在教學(xué)中適當(dāng)滲透分類討論思想。
重點(diǎn):有理數(shù)的加法法則
重點(diǎn):異號兩數(shù)相加的法則
教學(xué)過程:
二、講授新課
1、同號兩數(shù)相加的法則
問題:一個物體作左右方向的運(yùn)動,我們規(guī)定向左為負(fù),向右為正。向右運(yùn)動5m記作5m,向左運(yùn)動5m記作-5m。如果物體先向右運(yùn)動5m,再向右運(yùn)動3m,那么兩次運(yùn)動后總的結(jié)果是多少?
學(xué)生回答:兩次運(yùn)動后物體從起點(diǎn)向右運(yùn)動了8m。寫成算式就是5+3=8(m)
教師:如果物體先向左運(yùn)動5m,再向左運(yùn)動3m,那么兩次運(yùn)動后總的結(jié)果是多少?
學(xué)生回答:兩次運(yùn)動后物體從起點(diǎn)向左運(yùn)動了8m。寫成算式就是(-5)+(-3)=-8(m)
師生共同歸納法則:同號兩數(shù)相加,取與加數(shù)相同的符號,并把絕對值相加。
2、異號兩數(shù)相加的法則
教師:如果物體先向右運(yùn)動5m,再向左運(yùn)動3m,那么兩次運(yùn)動后物體從起點(diǎn)向哪個方向運(yùn)動了多少米?
學(xué)生回答:兩次運(yùn)動后物體從起點(diǎn)向右運(yùn)動了2m。寫成算式就是5+(-3)=2(m)
師生借此結(jié)論引導(dǎo)學(xué)生歸納異號兩數(shù)相加的法則:異號兩數(shù)相加,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值。
3、互為相反數(shù)的兩個數(shù)相加得零。
教師:如果物體先向右運(yùn)動5m,再向左運(yùn)動5m,那么兩次運(yùn)動后總的結(jié)果是多少?
學(xué)生回答:經(jīng)過兩次運(yùn)動后,物體又回到了原點(diǎn)。也就是物體運(yùn)動了0m。
師生共同歸納出:互為相反數(shù)的兩個數(shù)相加得零
教師:你能用加法法則來解釋這個法則嗎?
學(xué)生回答:可用異號兩數(shù)相加的法則來解釋。
一般地,還有一個數(shù)同0相加,仍得這個數(shù)。
三、鞏固知識
課本P18 例1,例2、課本P118 練習(xí)1、2題
四、總結(jié)
運(yùn)算的關(guān)鍵:先分類,再按法則運(yùn)算;
運(yùn)算的步驟:先確定符號,再計算絕對值。
注意:要借用數(shù)軸來進(jìn)一步驗證有理數(shù)的加法法則;異號兩數(shù)相加,首先要確定符號,再把絕對值相加。
五、布置作業(yè)
課本P24習(xí)題1.3第1、7題。
樂高教學(xué)初中數(shù)學(xué)教學(xué)設(shè)計5
絕對值
一、教學(xué)目標(biāo)設(shè)計
[知識與技能目標(biāo)]
1、借助數(shù)軸,初步理解絕對值的概念,能求一個數(shù)的絕對值,會利用絕對值比較兩個負(fù)數(shù)的大小。
2、通過應(yīng)用絕對值解決實(shí)際問題,體會絕對值的意義和作用。
[過程與方法目標(biāo)]
限度的發(fā)揮學(xué)生的主體參與,讓學(xué)生在教師的引導(dǎo)啟發(fā),師生的交流與探索下,輕松愉快地學(xué)到新知識。
[情感態(tài)度與價值觀]
借助數(shù)軸解決數(shù)學(xué)問題,有意識地形成“腦中有圖,心中有數(shù)”的數(shù)形結(jié)合思想,讓學(xué)生采取自主探索,合作交流的學(xué)習(xí)方式。
二、教材解讀
借助數(shù)軸引出對絕對值的概念,并通過計算、觀察、交流、發(fā)現(xiàn)絕對值的性質(zhì)特征,利用絕對值來比較兩個負(fù)數(shù)的大小。
讓學(xué)生直觀理解絕對值的含義,不要在絕對值符號內(nèi)部出現(xiàn)多重符號和
字母,多鼓勵學(xué)生通過觀察、歸納、驗證。
、教學(xué)過程設(shè)計與分析
一、情境導(dǎo)入
[課件展示,激趣感知]
博物館、農(nóng)場到學(xué)校與學(xué)校到博物館農(nóng)場的距離的關(guān)系。
[媒體展示課件,認(rèn)知生活中的有些問題]
不考慮相反意義,只考慮具體數(shù)值。
[創(chuàng)設(shè)情境,實(shí)例導(dǎo)入]利用動畫展示,讓學(xué)生在有趣的圖畫中感受絕對值激發(fā)學(xué)生的興趣。
實(shí)物的形象符合學(xué)生心理,學(xué)生興趣很高,踴躍發(fā)言,95%的學(xué)生能順利的解決問題。
師生互動
[提出問題,引發(fā)討論]
1、引導(dǎo)學(xué)生得出絕對值定義及表示方法。
2、同桌之間互相舉例。
[展示:啟發(fā)學(xué)生交流了解絕對值]
歸納絕對值概念,教師指出表示方法。
[師生互動、探索新知]:學(xué)生根據(jù)情境感知初步認(rèn)知絕對值,并通過對其概念的理解求解一個數(shù)的絕對值。
同桌之間舉例,效果良好,體現(xiàn)了“自主——協(xié)作”學(xué)習(xí)。
閱讀課文,互動探索
求解各數(shù)的絕對值后討論
1、想一想互為相反數(shù)的兩個數(shù)的絕對值有什么關(guān)系?學(xué)生舉例,并進(jìn)行觀察、比較、歸納。
2、議一議一個數(shù)的絕對值與這個數(shù)有什么關(guān)系?小組討論、交流教師引導(dǎo)學(xué)生用自己的語言描述所得結(jié)論教師質(zhì)疑:一個數(shù)的絕對值是否為負(fù)數(shù)?學(xué)生通過分析理解絕對值的內(nèi)在涵義。
閱讀課文:從各數(shù)的絕對值歸納絕對值的代數(shù)意義。
[閱讀課文:“想一想]提出問題,引起學(xué)生的思考。
[閱讀課文:“議一議]
學(xué)生分析各類數(shù)的絕對值與本身的關(guān)系,并對教師的質(zhì)疑進(jìn)行深究。
[趣引妙答,思路點(diǎn)撥]通過學(xué)生舉例思考,對互為相反數(shù)的兩個數(shù)的絕對值進(jìn)行觀察對比,從而得到它們的關(guān)系。
學(xué)生從“特殊——一般”分類歸納絕對值的代數(shù)意義,并通過歸納總結(jié)出絕對值的內(nèi)在涵義,體現(xiàn)學(xué)生的主體性。
積極調(diào)動學(xué)生的思維,使學(xué)生在協(xié)商、討論中將問題逐漸明朗化、具體化,在共享集體思維成果的基礎(chǔ)上達(dá)到對當(dāng)前所學(xué)內(nèi)容比較全面、正確的理解。
3、做一做
[激趣探知]
教師出示過關(guān)題目
學(xué)生通過自主探索最終找到兩個負(fù)數(shù)比較大小的方法,絕對值大的反而小。
師生歸納兩頁數(shù)比較大小的兩種方法。
[探索用絕對值比較兩負(fù)數(shù)的方法]
體驗概念的形式過程
舊知識的引用,讓學(xué)生在輕松愉快的環(huán)境中獲取新知,從已有知識逐漸到新知識,不但可激發(fā)學(xué)生的興趣,并且培養(yǎng)學(xué)生的探索精神,同時分解了本節(jié)的難點(diǎn)。
從舊知識層層引入,學(xué)生興趣十足,提高了教學(xué)效果,突破了難點(diǎn),學(xué)生接受輕而易舉。
鞏固練習(xí)
[絕對值比較兩負(fù)數(shù)大小的運(yùn)用]
情境:比較下列每組數(shù)的大小。
[媒體展示,出示習(xí)題]:
運(yùn)用絕對值比較負(fù)數(shù)大小。
[變成訓(xùn)練,鞏固反饋]
繼續(xù)對絕對值比較負(fù)數(shù)大小進(jìn)行鞏固練習(xí)。
由以上練習(xí)層層深入,學(xué)生解決問題的能力大大提高,并且印象深刻。
知識延伸
[學(xué)生探究,教師點(diǎn)撥]
[媒體展示]
絕對值定義,代數(shù)意義及內(nèi)在涵義的的靈活應(yīng)用。
[知識延伸,目標(biāo)升華]
充分發(fā)揮學(xué)生的自主探索能力,使學(xué)生能夠深入、細(xì)致的理解知識點(diǎn)。
學(xué)生能夠互相評點(diǎn),共同探索,既發(fā)展了自主學(xué)習(xí)能力,又強(qiáng)化了協(xié)作精神。
七、教學(xué)板書設(shè)計
絕 對 值
概念 正數(shù)的絕對值是它本身
絕對值 代數(shù)意義 0的絕對值是0 非負(fù)數(shù)
表示方法| | 負(fù)數(shù)的絕對值是它的相反數(shù)
如:|-2|=2 |+3|=3 絕對值最小的數(shù)是0